刷题首页
题库
高中数学
题干
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角
,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2017-08-23 08:38:23
答案(点此获取答案解析)
同类题1
已知随机变量
,其正态分布密度曲线如图所示,若向长方形
中随机投掷1点,则该点恰好落在阴影部分的概率为( )
附:若随机变量
,则
,
.
A.0.1359
B.0.7282
C.0.8641
D.0.93205
同类题2
已知一个三角形的三边长分别为5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻距离三角形的三个顶点的距离均超过1的概率( )
A.
B.
C.
D.
同类题3
任取
,则使
的概率是( )
A.
B.
C.
D.
同类题4
在正方形
的边上任取一点
,则点
刚好取自边
上的概率为__________.
同类题5
剪纸艺术是中国最古老的民间艺术之一,作为一种镂空艺术,它能给人以视觉上的艺术享受.在如图所示的圆形图案中有12个树叶状图形(即图中阴影部分),构成树叶状图形的圆弧均相同.若在圆内随机取一点,则此点取自阴影部分的概率是( )
A.
B.
C.
D.
相关知识点
计数原理与概率统计
概率
几何概型