- 数与式
- 方程与不等式
- 一元一次方程
- + 二元一次方程组
- 二元一次方程(组)的相关概念
- 解二元一次方程组
- 同解方程组
- 三元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等。交易其一,金轻十三两。问金、银各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同)乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等。两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)。则黄金每枚重___两,白银每枚重____两.
国庆假期期间,某单位8名领导和320名员工集体外出进行素质拓展活动,准备租用45座大车或30座小车.若租用2辆大车3辆小车共需租车费1700元;若租用3辆大车2辆小车共需租车费1800元
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名领导,每个人均有座位,且总租车费用不超过3100元,求最省钱的租车方案.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名领导,每个人均有座位,且总租车费用不超过3100元,求最省钱的租车方案.
某水果批发市场,草莓的批发价格是每箱
元,苹果的批发价格是每箱
元.
(1)若李心批发草莓,苹果共
箱,刚好花费
元,则他购买草莓、苹果各多少箱.
(2)李心有甲,乙两个店铺,每个店铺在同一时间段内都能售出草莓,苹果两种水果合计
箱,并且每售出一箱草莓和苹果,甲店铺获毛利润分别为
元和
元,乙店铺获毛利润分别为
元和
元.现在,李心要将批发购进的
箱草莓,
箱苹果分配给每个店铺各
箱.设分配给甲店草莓
箱.
①根据信息填表:
②设李心获取的总毛利润为
元,
(1)求
与
的函数关系式:
(2)若在保证乙店铺获得毛利润不少于
元的前提下,应怎样分配水果,使总毛利润
最大,最大的总毛利润是多少元.


(1)若李心批发草莓,苹果共


(2)李心有甲,乙两个店铺,每个店铺在同一时间段内都能售出草莓,苹果两种水果合计









①根据信息填表:
| 草莓数量(箱) | 苹果数量(箱) | 合计(箱) |
甲店 | ![]() | | ![]() |
乙店 | | | ![]() |
②设李心获取的总毛利润为

(1)求


(2)若在保证乙店铺获得毛利润不少于


数轴上三个点表示的数分别为 p、r、s.若 p - r=5,s - p=2,则 s - r 等于( )
A.3 | B.- 3 | C.7 | D.- 7 |
中国青少年发展基金会为某地“希望小学”捐赠物资,其中文具和食品共320件,文具比食品多80件.
(1)求文具和食品各多少件;
(2)现计划租用甲、乙两种货车共8辆,一次性将这批文具和食品全部运往该地.已知甲种货车最多可装文具40件和食品10件,乙种货车最多可装文具和食品各20件.则中国青少年发展基金会安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(1)求文具和食品各多少件;
(2)现计划租用甲、乙两种货车共8辆,一次性将这批文具和食品全部运往该地.已知甲种货车最多可装文具40件和食品10件,乙种货车最多可装文具和食品各20件.则中国青少年发展基金会安排甲、乙两种货车时有几种方案?请你帮助设计出来.
某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,毎箱的成本分别为箱中A、B、C三种水果的成本之和,箱子成本忽略不计.甲种方式每箱分别装A、B、C三种水果6kg、3kg、1kg,乙种方式每分別裳A、B、C三种水果2kg、6kg、2kg,甲每箱的总成本是每千克A成本的15倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%;丙每箱在成本上提高40%标价后打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:1:5时,则销售的总利润率为_____.