- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- + 互斥事件
- 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 对立事件
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
同时投掷两枚币一次,那么互斥而不对立的两个事件是( )
A.“至少有1个正面朝上”,“都是反面朝上” |
B.“至少有1个正面朝上”,“至少有1个反面朝上” |
C.“恰有1个正面朝上”,“恰有2个正面朝上” |
D.“至少有1个反面朝上”,“都是反面朝上” |
由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:
则:至多2人排队的概率为___________.
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
则:至多2人排队的概率为___________.
某商家每年都参加为期5天的商品展销会,在该展销会上商品的日销售量与是否下雨有关.经统计,2015年该商家的商品日销售情况如下表:
以2015年雨天和非雨天的日平均销售量估计相应天气的销售量.若2016年5天的展销会中每天下雨的概率均为
,且每天下雨与否相互独立.
(Ⅰ)估计2016年展会期间能够售出的该商品的件数;
(Ⅱ)该商品成本价为90元/件,销售价为110元/件.
(ⅰ)将销售利润
(单位:元)表示为2016年5天的展销会中下雨天数
的函数;
(ⅱ)由于2016年参展总费用上涨到2500元,商家决定若最终获利大于8000元的概率超过0.6才继续参展,请你为商家是否参展作出决策,并说明理由.
日期 | 6月18日 | 6月19日 | 6月20日 | 6月21日 | 6月22日 |
天气 | 小雨 | 小雨 | 多云 | 多云 | 晴 |
日销售量 (单位:件) | 97 | 103 | 120 | 130 | 125 |
以2015年雨天和非雨天的日平均销售量估计相应天气的销售量.若2016年5天的展销会中每天下雨的概率均为

(Ⅰ)估计2016年展会期间能够售出的该商品的件数;
(Ⅱ)该商品成本价为90元/件,销售价为110元/件.
(ⅰ)将销售利润


(ⅱ)由于2016年参展总费用上涨到2500元,商家决定若最终获利大于8000元的概率超过0.6才继续参展,请你为商家是否参展作出决策,并说明理由.
下列说法正确的是( )
A.互斥事件一定是对立事件,对立事件不一定是互斥事件 |
B.互斥事件不一定是对立事件,对立事件一定是互斥事件 |
C.事件![]() ![]() |
D.事件![]() ![]() |
甲袋中有5个红球,2个白球和3个黑球,乙袋中有4个红球,3个白球和3个黑球.先从甲袋中随机取出一球放入乙袋,分别以A1,A2和A3表示由甲袋取出的球是红球,白球和黑球的事件;再从乙袋中随机取出一球,以B表示由乙袋取出的球是红球的事件.则下列结论
①P(B)=
;
②P(B|A1)=
;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件.
其中正确的是 (写出所有正确结论的编号).
①P(B)=

②P(B|A1)=

③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件.
其中正确的是 (写出所有正确结论的编号).
“星光大道”是观众喜爱的央视栏目.现有
位周冠军
和甲、乙两位挑战者参加月冠军比赛,比赛规则是:第一轮甲、乙两位挑战者从
位周冠军中各选一位进行比赛,胜者进入第二轮比赛,未被选中的周冠军直接进入第二轮比赛;第二轮比赛从
位选手中淘汰一位,胜者进入第三轮比赛;第三轮比赛胜者为月冠军.每位选手被淘汰的可能性相同.
(1)求周冠军
和挑战者甲、乙进行第一轮比赛,且至少有一位挑战者进入第二轮比赛的概率;
(2)求月冠军是挑战者的概率.




(1)求周冠军

(2)求月冠军是挑战者的概率.
.将10个白小球中的3个染成红色,3个染成兰色,试解决下列问题:
(1)求取出3个小球中红球个数
的分布列和数学期望;
(2) 求取出3个小球中红球个数多于白球个数的概率
(1)求取出3个小球中红球个数

(2) 求取出3个小球中红球个数多于白球个数的概率
经统计,某大型商场一个结算窗口每天排队结算的人数及相应的概率如下:
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?
排队人数 | 0﹣5 | 6﹣10 | 11﹣15 | 16﹣20 | 21﹣25 | 25人以上 |
概 率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)每天不超过20人排队结算的概率是多少?
(2)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?