- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 由圆心(或半径)求圆的方程
- 求过已知三点的圆的标准方程
- 由标准方程确定圆心和半径
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C的圆心在直线
上,且与y轴相切于点(0,1).
(1)求圆C的方程;
(2)若圆C与直线
:
交于A,B两点,分别连接圆心C与A,B两点,若
,求
的值.

(1)求圆C的方程;
(2)若圆C与直线




定义:圆心到直线的距离与圆的半径之比称为“直线关于圆的距离比
”.
(1)设圆
求过点P
的直线关于圆
的距离比
的直线方程;
(2)若圆
与
轴相切于点A
且直线
关于圆C的距离比
求出圆C的方程.

(1)设圆




(2)若圆





如图,
,
分别是通过某城市开发区中心O的两条东西和南北走向的街道,连接M,N两地间的铁路是圆心在
上的一段圆弧.若点M在点O正北方向,且
,点N到
,
的距离分别为5km和4km.

(1)建立适当的坐标系,求铁路路线所在圆弧的方程.
(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4km,并且铁路上任意一点到校址的距离不能小于
km,求该校址距点O的最近距离.







(1)建立适当的坐标系,求铁路路线所在圆弧的方程.
(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4km,并且铁路上任意一点到校址的距离不能小于
