- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,公路AM,AN围成一块顶角为α的角形耕地,其中tanα=-2,在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,
km,现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园,为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.


已知函数f(x)=ax3+|x-a|,a
R.
(1)若a=-1,求函数y=f(x) (x
[0,+∞))的图象在x=1处的切线方程;
(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;
(3)当a>0时,若对于任意的x1
[a,a+2],都存在x2
[a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.

(1)若a=-1,求函数y=f(x) (x

(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;
(3)当a>0时,若对于任意的x1


某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的
的管理费(即销售100元要征收
元),于是该产品定价每件比第一年增加了
元,预计年销售量减少
万件,要使第二年商场在该产品经营中收取的管理费不少于14万元,则
的最大值是( )





A.2 | B.6 | C.8.5 | D.10 |