- 集合与常用逻辑用语
- 函数与导数
- 二次函数的定义域
- + 求二次函数的值域
- 求二次函数的解析式
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数
的值域为
.
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数
在的单调性,并用单调性的定义证明你的结论;
(3)求出
在
上的最小值
,并求
的值域.


(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数

(3)求出




已知函数
是定义在
上的偶函数,且当
时,
.现已画出函数
在
轴左侧的图象,如图所示,根据图象:

(1)请将函数
的图象补充完整并写出该函数的增区间(不用证明).
(2)求函数
的解析式.
(3)若函数
,求函数
的最小值.







(1)请将函数

(2)求函数

(3)若函数


设函数
在
上有定义,实数
和
满足
,若
在区间
上不存在最小值,则称
在
上具有性质
.
(1)当
,且
在区间
上具有性质
时,求常数
的取值范围;
(2)已知
(
),且当
时,
,判别
在区间
上是否具有性质
,试说明理由.










(1)当





(2)已知







某旅游胜地欲开发一座景观山,从山的侧面进行勘测,迎面山坡线
由同一平面的两段抛物线组成,其中
所在的抛物线以
为顶点、开口向下,
所在的抛物线以
为顶点、开口向上,以过山脚(点
)的水平线为
轴,过山顶(点
)的铅垂线为
轴建立平面直角坐标系如图(单位:百米).已知
所在抛物线的解析式
,
所在抛物线的解析式为

(1)求
值,并写出山坡线
的函数解析式;
(2)在山坡上的700米高度(点
)处恰好有一小块平地,可以用来建造索道站,索道的起点选择在山脚水平线上的点
处,
(米),假设索道
可近似地看成一段以
为顶点、开口向上的抛物线
当索道在
上方时,索道的悬空高度有最大值,试求索道的最大悬空高度;
(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?














(1)求


(2)在山坡上的700米高度(点







(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?