1.单选题- (共6题)
2.
长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为( )
A.0.25×1010 | B.2.5×1010 | C.2.5×109 | D.25×108 |
4.
如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=
(x>0)的图象上,若AB=2,则k的值为( )

A. 4 B. 2
C. 2 D. 


A. 4 B. 2


2.填空题- (共5题)
9.
如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____.

3.解答题- (共7题)
13.
学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.
(1)求每套课桌椅的成本;
(2)求商店获得的利润.
(1)求每套课桌椅的成本;
(2)求商店获得的利润.
14.
某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.

15.
如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.
(1)用含t的代数式表示线段DC的长;
(2)当点Q与点C重合时,求t的值;
(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;
(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.
(1)用含t的代数式表示线段DC的长;
(2)当点Q与点C重合时,求t的值;
(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;
(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.

16.
如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣
x2+mx+1(x≥0)的图象记为G1,函数y=﹣
x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.

(1)当点A的横坐标为﹣1时,求m的值;
(2)求L与m之间的函数关系式;
(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;
(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当
≤y0≤9时,直接写出L的取值范围.



(1)当点A的横坐标为﹣1时,求m的值;
(2)求L与m之间的函数关系式;
(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;
(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当

17.
图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:

(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.

(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:9
7星难题:0
8星难题:2
9星难题:4