四川省资阳市2018年中考数学试卷

适用年级:初三
试卷号:67479

试卷类型:中考真题
试卷考试时间:2018/7/19

1.单选题(共8题)

1.
的相反数是(  )
A.3B.﹣3C.-D.
2.
下列运算正确的是(  )
A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a23=a6
3.
﹣0.00035用科学记数法表示为(  )
A.﹣3.5×104B.﹣3.5×104C.3.5×104D.﹣3.5×103
4.
已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(m),则不等式组mx﹣2<kx+1<mx的解集为(  )
A.x>B.<x<C.x<D.0<x<
5.
已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是(  )
A.4个B.3个C.2个D.1个
6.
如图是由四个相同的小正方体堆成的物体,它的正视图是(  )
A.B.C.D.
7.
某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是(  )
A.87B.87.5C.87.6D.88
8.
如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是(  )
A.12厘米B.16厘米C.20厘米D.28厘米

2.填空题(共3题)

9.
已知a、b满足(a﹣1)2+=0,则a+b=_____.
10.
已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
11.
如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.

3.解答题(共4题)

12.
先化简,再求值:÷(﹣a),其中a=﹣1,b=1.
13.
为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.
(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?
(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?
14.
已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
15.
如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
试卷分析
  • 【1】题量占比

    单选题:(8道)

    填空题:(3道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:9

    7星难题:0

    8星难题:1

    9星难题:3