1.单选题- (共3题)
1.
甲、乙两车在平直公路上行驶,其速度-时间图象如图所示,则下列说法正确的是( )


A.8 s末,甲、乙两车相遇 |
B.甲车在0~4s内的位移小于乙车在4~8s内的位移 |
C.4 s末,甲车的加速度小于乙车的加速度 |
D.在0~8s内,甲车的平均速度小于乙车的平均速度 |
2.
卫星发射进入预定轨道往往需要进行多次轨道调整,如图所示,某次发射任务中先将卫星送至近地轨道,然后再控制卫星进入椭圆轨道,最后进入预定圆形轨道运动。图中O点为地心,A点是近地轨道和椭圆轨道的交点,B点是远地轨道与椭圆轨道的交点,远地点B离地面高度为6R(R为地球半径)。设卫星在近地轨道运动的周期为T,下列说法正确的是( )


A.控制卫星从图中低轨道进入椭圆轨道需要使卫星减速 |
B.卫星在近地轨道与远地轨道运动的速度之比为![]() |
C.卫星在近地轨道通过A点的加速度小于在椭圆轨道通过A点时的加速度 |
D.卫星从A点经4T的时间刚好能到达B点 |
3.
如图甲所示的“火灾报警系统”电路中,理想变压器原、副线圈匝数之比为10:1,原线圈接入图乙所示的电压,电压表和电流表均为理想电表,R0为半导体热敏电阻,其阻值随温度的升高而减小,R1为滑动变阻器。当通过报警器的电流超过某值时,报警器将报警。下列说法正确的是( )

A. 电压表V的示数为20V
B. R0处出现火警时,电流表A的示数减小
C. R0处出现火警时,变压器的输入功率增大
D. 要使报警器的临界温度升高,可将R1的滑片P适当向下移动

A. 电压表V的示数为20V
B. R0处出现火警时,电流表A的示数减小
C. R0处出现火警时,变压器的输入功率增大
D. 要使报警器的临界温度升高,可将R1的滑片P适当向下移动
2.选择题- (共2题)
3.多选题- (共2题)
6.
如图所示,内壁光滑的圆管形轨道竖直放置在光滑水平地面上,且恰好处在两固定光滑挡板M、N之间,圆轨道半径为R,其质量为2m,一质量为m的小球能在管内运动,小球可视为质点,管的内径不计,当小球运动到轨道最高点时,圆轨道对地面的压力刚好为零,则下列判断正确的是( )


A.小球运动的最小速度为![]() |
B.圆轨道对地面的最大压力为10mg |
C.当小球离挡板N最近时,圆轨道对挡板N的压力大小为5mg |
D.圆轨道对挡板M、N的压力总是为零 |
7.
如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用FM、FN表示.不计轨道电阻.以下叙述正确的是


A.![]() | B.![]() | C.![]() | D.![]() |
4.填空题- (共2题)
8.
下列说法正确的是_________。
E.一定质量的理想气体经历等压膨胀过程,气体密度将减小、分子平均动能将增大
A.把很多小的单晶体放在一起,就变成了非晶体 |
B.载人飞船绕地球运动时容器内的水呈球形,这是因为液体表面具有收缩性 |
C.随着科技的不断进步,物体可以冷却到绝对零度 |
D.第二类永动机没有违反能量守恒定律 |
9.
下列说法正确的是___________
E.太阳光经过三棱镜的两次折射,会发散成彩色光带
A.在双缝干涉实验中,保持入射光的频率不变,增大双缝间的距离,相邻两亮条纹间距增大 |
B.日落时分,拍摄水面下的景物,在照相机镜头前装上滤光片,可以使像更清晰,这是利用了光的偏振原理 |
C.我们发现竖直向上高速运动的球体,在水平方向上长度变短了 |
D.用光照射大额钞票上用荧光物质印刷的文字会发出可见光,这是利用紫外线的荧光效应 |
5.解答题- (共4题)
10.
在短道速滑世锦赛女子500米决赛中,接连有选手意外摔倒,由于在短道速滑比赛中很难超越对手,因而在比赛开始阶段每个选手都要以最大的加速度加速,在过弯道前超越对手。为提高速滑成绩,选手在如下场地进行训练:赛道的直道长度为L=30 m,弯道半径为R=2.5 m。忽略冰面对选手的摩擦力,且冰面对人的弹力沿身体方向。在过弯道时,身体与冰面的夹角θ的最小值为45°,直线加速过程视为匀加速过程,加速度a=1 m/s2。若训练过程中选手没有减速过程,为保证速滑中不出现意外情况,选手在直道上速滑的最短时间为多少?(g取10 m/s2)
11.
如图所示,在绝缘水平面上的两物块A、B用劲度系数为k的水平绝缘轻质弹簧连接,物块B、C用跨过轻质定滑轮的绝缘轻绳连接,A靠在竖直墙边,C在倾角为θ的长斜面上,滑轮两侧的轻绳分别与水平面和斜面平行.A、B、C的质量分别是m、2m、2m,A、C均不带电,B带正电,滑轮左侧存在着水平向左的匀强电场,整个系统不计一切摩擦,B与滑轮足够远.B所受的电场力大小为6mgsin θ,开始时系统静止.现让C在沿斜面向下的拉力F作用下做加速度大小为a的匀加速直线运动,弹簧始终未超过弹性限度,重力加速度大小为g.

(1)求弹簧的压缩长度x1;
(2)求A刚要离开墙壁时C的速度大小v1及拉力F的大小;
(3)若A刚要离开墙壁时,撤去拉力F,同时电场力大小突然减为2mgsin θ,方向不变,求在之后的运动过程中弹簧的最大弹性势能Epm.

(1)求弹簧的压缩长度x1;
(2)求A刚要离开墙壁时C的速度大小v1及拉力F的大小;
(3)若A刚要离开墙壁时,撤去拉力F,同时电场力大小突然减为2mgsin θ,方向不变,求在之后的运动过程中弹簧的最大弹性势能Epm.
12.
如图所示,实线是一列简谐横波在t1时刻的波形图,虚线是在t2=t1+0.2 s时刻的波形图.

(1)若波速为35 m/s,求质点M在t1时刻的振动方向.
(2)在t1到t2的时间内,如果M通过的路程为1m,那么波的传播方向怎样?波速为多大?

(1)若波速为35 m/s,求质点M在t1时刻的振动方向.
(2)在t1到t2的时间内,如果M通过的路程为1m,那么波的传播方向怎样?波速为多大?
13.
如图所示,一下端开口的竖直固定圆筒,圆筒内横截面积为S,内有甲、乙两活塞,甲、乙质量分别为m、M,竖立的劲度系数为k的轻弹簧下端固定在水平地面上,上端与活塞乙连接,圆筒上端与下端开口均与大气相通。两活塞间密闭一定质量的理想气体,两活塞间距为h,均处于静止状态。现对活塞甲施加向下的压力,使其缓慢下移。已知甲、乙都可沿圆筒无摩擦地上下滑动且不漏气,大气压强为p0,环境温度不变,弹簧始终处于弹性限度内,重力加速度为g。则当施加的压力为F时,求:

(i)气体的压强p;
(ii)整个过程活塞甲下移的距离x。

(i)气体的压强p;
(ii)整个过程活塞甲下移的距离x。
6.实验题- (共1题)
14.
图示为“探究合力功与物体动能变化的关系”的实验装置,只改变重物的质量进行多次实验,每次小车都从同一位置A由静止释放。请回答下列问题:

(1)用螺旋测微器测量遮光条的宽度d,其示数如图所示,则d=__________mm。
(2)平衡摩擦力时,________(填“要”或“不要”)挂上重物。
(3)实验时,________(填“需要”或“不需要”)满足重物的总质量远小于小车的总质量(包括拉力传感器和遮光条)。
(4)按正确实验操作后,为了尽可能减小实验误差,若传感器的示数为F,小车总质量为M,重物的总质量为m,A、B两点间的距离为L,遮光条通过光电门的时间为t,则需要测量的物理量是_________________________。
(5)在实验误差允许范围内,关系式______________________成立。(用测量的物理量表示)

(1)用螺旋测微器测量遮光条的宽度d,其示数如图所示,则d=__________mm。
(2)平衡摩擦力时,________(填“要”或“不要”)挂上重物。
(3)实验时,________(填“需要”或“不需要”)满足重物的总质量远小于小车的总质量(包括拉力传感器和遮光条)。
(4)按正确实验操作后,为了尽可能减小实验误差,若传感器的示数为F,小车总质量为M,重物的总质量为m,A、B两点间的距离为L,遮光条通过光电门的时间为t,则需要测量的物理量是_________________________。
A.M、m、L | B.F、M、L、t | C.F、m、L、t | D.F、M、L |
试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(2道)
多选题:(2道)
填空题:(2道)
解答题:(4道)
实验题:(1道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:0
9星难题:1