1.单选题- (共10题)
5.
如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(
)



A.①②④ | B.①②⑤ | C.②③④ | D.③④⑤ |
6.
如图,菱形ABCD的两个顶点B、D在反比例函数y=
的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( )



A.﹣5 | B.﹣4 | C.﹣3 | D.﹣2 |
2.选择题- (共3题)
3.填空题- (共7题)
17.
如图,直线y=
x分别与双曲线y=
(m>0,x>0),双曲线y=
(n>0,x>0)交于点A和点B,且
,将直线y=
x向左平移6个单位长度后,与双曲线y=
交于点C,若S△ABC=4,则
的值为_____,mn的值为_____.








19.
如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于______.

4.解答题- (共5题)
23.
如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.
(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;
(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;
(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;
(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;
(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.

24.
某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).
(1)求出y1与x之间满足的函数表达式,并直接写出x的取值范围;
(2)求出y2与x之间满足的函数表达式;
(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)
(1)求出y1与x之间满足的函数表达式,并直接写出x的取值范围;
(2)求出y2与x之间满足的函数表达式;
(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(7道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:13
7星难题:0
8星难题:2
9星难题:5