1.单选题- (共9题)
2.
“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )


A.56×108 | B.5.6×108 | C.5.6×109 | D.0.56×1010 |
4.
《九章算术》是中国传统数学最重要的著作之一,其中记载:“今有共买物人出八,盈三;人出七,不足四问人数、物价各几何?”译文:“几个人去购买物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少”?设有m人,物品价格是n钱,下列四个等式:①8m+3=7m﹣4;②
=
;③
=
;④8m﹣3=7m+4,其中正确的是( )






A.①② | B.②④ | C.②③ | D.③④ |
5.
寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( )
A.20 | B.22 | C.25 | D.20或25 |
6.
将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 | B.y=x2+3x | C.y=x2﹣5x+10 | D.y=x2﹣5x+4 |
8.
如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,△ABC的三边所围成的区域面积记为S1,黑色部分面积记为S2,其余部分面积记为S3,则( )


A.S1=S2 | B.S1=S3 | C.S2=S3 | D.S1=S2+S3 |
2.填空题- (共6题)
3.解答题- (共6题)
17.
大张高铁是连接晋北地区与京津冀地区的重要交通枢纽,也是大同市的“一号工程”,大张高铁预计于今年9月进行联调联试,并计划年底开通大张高铁开通后,从大同至北京的列车运行时间将比普通列车缩短4
小时,已知大同到北京全程约350千米,高铁列车的速度是普通列车速度的3.6倍,求从大同乘坐高铁到北京需要多长时间?

18.
如图,一次函数y1=kx+b(k≠0)和反比例函数
的图象相交于点A(﹣4,2),B(n,﹣4)
(1)求一次函数和反比例函数的表达式;
(2)观察图象,直接写出不等式y1<y2的解集.

(1)求一次函数和反比例函数的表达式;
(2)观察图象,直接写出不等式y1<y2的解集.

19.
综合与探究
如图,已知抛物线y=ax2﹣3x+c与y轴交于点A(0,﹣4),与x轴交于点B(4,0),点P是线段AB下方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点的坐标;
(2)当点P移动到抛物线的什么位置时,∠PAB=90°求出此时点P的坐标;
(3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P的横坐标为t,△PAB的面积为S,求S关于t的函数表达式,并求t为何值时S有最大值,最大值是多少?
如图,已知抛物线y=ax2﹣3x+c与y轴交于点A(0,﹣4),与x轴交于点B(4,0),点P是线段AB下方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点的坐标;
(2)当点P移动到抛物线的什么位置时,∠PAB=90°求出此时点P的坐标;
(3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P的横坐标为t,△PAB的面积为S,求S关于t的函数表达式,并求t为何值时S有最大值,最大值是多少?

20.
如图,在直角坐标系xOy中,O为坐标原点,直线AB分别与y轴,x轴交于A(0,4),B(3,0)两点.
(1)尺规作图:在x轴上求作一点C,使得△ABC是以
为顶角的等腰三角形,并在图中标明相应字母;(保留作图痕迹,不写作法)
(2)在(1)的条件下,求点C的坐标.
(1)尺规作图:在x轴上求作一点C,使得△ABC是以

(2)在(1)的条件下,求点C的坐标.

21.
综合与实践
问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.
操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:
①线段CE与线段BD之间的数量关系是 .
②直线CE与直线BD之间的位置关系是 .
类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.
拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB上方时,若DE∥AB,且AB=
,AD=1,其他条件不变,试求出线段CE的长.(直接写出结论)
问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.
操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:
①线段CE与线段BD之间的数量关系是 .
②直线CE与直线BD之间的位置关系是 .
类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.
拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB上方时,若DE∥AB,且AB=


试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:14
7星难题:0
8星难题:3
9星难题:3