1.单选题- (共9题)
5.
二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )
A.0<t<5 | B.﹣4≤t<5 | C.﹣4≤t<0 | D.t≥﹣4 |
2.填空题- (共3题)
3.解答题- (共6题)
14.
某商店销售一种旅游纪念品,第一周的营业额为200元,第二周该商店对纪念品打8折销售,结果销售量增加3件,营业额增加了40%.
(1)求该商店第二周的营业额;
(2)求第一周该种纪念品每件的销售价格.
(1)求该商店第二周的营业额;
(2)求第一周该种纪念品每件的销售价格.
15.
如图,已知抛物线y=a(x﹣2)2+c与x轴从左到右依次交于A,B两点,与y轴交于点C,其中点B的坐标为(3,0),点C的坐标为(0,﹣3),连接AC,BC.
(1)求该抛物线的解析式;
(2)若点P是该抛物线的对称轴上的一个动点,连接PA,PB,PC,设点P的纵坐标为h,试探究:
①当h为何值时,|PA﹣PC|的值最大?并求出这个最大值.
②在P点的运动过程中,∠APB能否与∠ACB相等?若能,请求出P点的坐标;若不能,请说明理由.
(1)求该抛物线的解析式;
(2)若点P是该抛物线的对称轴上的一个动点,连接PA,PB,PC,设点P的纵坐标为h,试探究:
①当h为何值时,|PA﹣PC|的值最大?并求出这个最大值.
②在P点的运动过程中,∠APB能否与∠ACB相等?若能,请求出P点的坐标;若不能,请说明理由.

16.
如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,﹣4),反比例﹣函数y=
(k≠0)的图象经过点C.
(1)求反比例函数的解析式;
(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.

(1)求反比例函数的解析式;
(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.

17.
为了解本校学生平均每天的课外学习时间情况,学校随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时):A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两副不完整的统计图.请你根据图中信息解答下列问题:

(1)本次抽样调查共抽取了 名学生,请将条形统计图补充完整;
(2)求表示B等级的扇形圆心角α的度数;
(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.

(1)本次抽样调查共抽取了 名学生,请将条形统计图补充完整;
(2)求表示B等级的扇形圆心角α的度数;
(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:14
7星难题:0
8星难题:0
9星难题:4