1.单选题- (共13题)
1.
今年一季度,河北省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7”用科学记数法表示为( )
A.2.147×102 | B.0.2147×103 |
C.2.147×1010 | D.0.2147×1011 |
4.
下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3个黑色菱形纸片,第②个图中有5个黑色菱形纸片,第③个图中有7个黑色菱形纸片,…按此规律排列下去,第20个图中黑色菱形纸片的张数为( )


A.38 | B.39 | C.40 | D.41 |
7.
如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①b+2a=0;②抛物线与x轴的另一个交点为(4,0);③a+c>b;④若(﹣1,y1),(
,y2)是抛物线上的两点,则y1<y2.其中正确的结论有( )



A.4个 | B.3个 | C.2个 | D.1个 |
8.
如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )


A.![]() | B.2 | C.![]() | D.2![]() |
11.
如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )


A.6π﹣![]() | B.6π﹣9![]() | C.12π﹣![]() | D.![]() |
12.
如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为( )


A.(1,0) | B.(﹣5,0) | C.(0,1) | D.(﹣1,0) |
13.
如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于
DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )



A.(![]() | B.(![]() | C.(3﹣![]() | D.(![]() |
2.填空题- (共3题)
15.
如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③
。其中正确的结论是____________.(填写所有正确结论的序号)


3.解答题- (共4题)
17.
如图,数轴上有点A、B,且点A表示﹣4,AB=10.
(1)点B表示的有理数为 .
(2)一只小虫从点A出发,以每秒1个单位长度的速度沿数轴正方向爬行到点C,点M、N分别是AC、BC的中点.
①若爬行4秒,则M表示数 ;N表示数 ;MN= .
②若爬行16秒,则M表示数 ;线段MN= .
③若爬行t秒,则线段MM= .
发现:点A、B、C在同一直线上,点M、N分别是AC、BC的中点,已知MN=a,则AB= (用含a的式子表示)
(1)点B表示的有理数为 .
(2)一只小虫从点A出发,以每秒1个单位长度的速度沿数轴正方向爬行到点C,点M、N分别是AC、BC的中点.
①若爬行4秒,则M表示数 ;N表示数 ;MN= .
②若爬行16秒,则M表示数 ;线段MN= .
③若爬行t秒,则线段MM= .
发现:点A、B、C在同一直线上,点M、N分别是AC、BC的中点,已知MN=a,则AB= (用含a的式子表示)

18.
某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.
(1)商场第一次购入的空调每台进价是多少元?
(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
(1)商场第一次购入的空调每台进价是多少元?
(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
19.
如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=
(x>0)的图象经过AO的中点C,交AB于点D,且AD=3.
(1)设点A的坐标为(4,4)则点C的坐标为 ;
(2)若点D的坐标为(4,n).
①求反比例函数y=
的表达式;
②求经过C,D两点的直线所对应的函数解析式;
(3)在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

(1)设点A的坐标为(4,4)则点C的坐标为 ;
(2)若点D的坐标为(4,n).
①求反比例函数y=

②求经过C,D两点的直线所对应的函数解析式;
(3)在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

试卷分析
-
【1】题量占比
单选题:(13道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:4
9星难题:4