1.单选题- (共10题)
8.
把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A.y=﹣2(x+1)2+1 | B.y=﹣2(x﹣1)2+1 |
C.y=﹣2(x﹣1)2﹣1 | D.y=﹣2(x+1)2﹣1 |
2.填空题- (共4题)
12.
小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小
婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行
的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示(1)妈妈从家出发_____分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟_____米,小婷家离学校的距离为_____米.



13.
甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了_____ 米.

14.
如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC,BD于点E,F,CE=2,连接C

A.给出以下结论:①△ABF≌△CBF;②点E到AB的距离是3![]() ![]() ![]() |

3.解答题- (共8题)
16.
某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.
| 原进价(元/张) | 零售价(元/张) | 成套售价(元/套) |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.
17.
小明骑电动车从甲地去乙地,而小刚骑自行车从乙地去甲地,两人同时出发走相同的路线;设小刚行驶的时间为x(h),两人之间的距离为y(km),图中的折线表示y与x之间的函数关系,点B的坐标为(
,0). 根据图象进行探究:

(1)两地之间的距离为 km;
(2)请解释图中点B的实际意义;
(3)求两人的速度分别是每分钟多少km?
(4)求线段BC所表示的y与x之间的函数关系式;并写出自变量x的取值范围.


(1)两地之间的距离为 km;
(2)请解释图中点B的实际意义;
(3)求两人的速度分别是每分钟多少km?
(4)求线段BC所表示的y与x之间的函数关系式;并写出自变量x的取值范围.
18.
在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣4ax﹣
交x轴正半轴于点A(5,0),交y轴于点


A. (1)求抛物线的解析式; (2)如图1,点P为第一象限内抛物线上一点,连接AP,将射线AP绕点A逆时针旋转60°,与过点P且垂直于AP的直线交于点C,设点P横坐标为t,点C的横坐标为m,求m与t之间的函数关系式(不要求写出t的取值范围); (3)如图2,在(2)的条件下,过点C作直线交x轴于点D,在x轴上取点F,连接FP,点E为AC的中点,连接ED,若F的横坐标为- ![]() |

19.
如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.

(1)判断线段OA,OP的数量关系,并说明理由.
(2)当OD=
时,求CP的长.
(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最大值.

(1)判断线段OA,OP的数量关系,并说明理由.
(2)当OD=

(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最大值.
20.
平面直角坐标系在代数和几何之间架起了一座桥梁,实现了几何方法与代数方法的结合,使数与形统一了起来,在平面直角坐标系中,已知点A(x1,y1)、B(x2,y2),则A、B两点之间的距离可以表示为AB=
,例如A(2,1)、B(﹣1,2),则A、B两点之间的距离AB=
=
;反之,代数式
也可以看作平面直角坐标系中的点C(5,1)与点D(1,﹣2)之间的距离.
(1)已知点M(﹣7,6),N(1,0),则M、N两点间的距离为 ;
(2)求代数式
的最小值;
(3)求代数式|
| 取最大值时,x的取值.




(1)已知点M(﹣7,6),N(1,0),则M、N两点间的距离为 ;
(2)求代数式

(3)求代数式|

22.
为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.
甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5
甲、乙两校参与测试的老师成绩的平均数平均数、中位数、众数如下表:
根据以上信息,回答下列问题:
(1)m= ;
(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是 (填“王”或“李”)老师,请写出理由;
(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.
成绩(分) 频数 学校 | 90≤x<92 | 92≤x<94 | 94≤x<96 | 96≤x<98 | 98≤x≤100 |
甲校 | 2 | 3 | 5 | 10 | 10 |
甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5
甲、乙两校参与测试的老师成绩的平均数平均数、中位数、众数如下表:
学校 | 平均数 | 中位数 | 众数 |
甲校 | 96.35 | m分 | 99分 |
乙校 | 95.85 | 97.5份 | 99分 |
根据以上信息,回答下列问题:
(1)m= ;
(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是 (填“王”或“李”)老师,请写出理由;
(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:8
7星难题:0
8星难题:4
9星难题:5