2019年江苏省南京市第二十九中学九年级上学期第一次学业水平考试数学试题

适用年级:初三
试卷号:63854

试卷类型:月考
试卷考试时间:2019/7/15

1.单选题(共4题)

1.
已知 ,则的值为( )
A.-5或1B.1C.5D.5或-1
2.
下列一元二次方程中,两实数根的和为3的是( )
A.
B.
C.
D.
3.
某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场采取了降价措施,假设在一定范围内,村衫的单价每降1元,商场平均每天可多售出2件,如果降价后商场销售这批衬杉每天盈利1250 元,衬杉的单价降了x元,那么下面所列的方程正确的是(  )
A.B.
C.D.
4.
若关于x的方程kx2-(k+1)x+1=0的根是整数,则满足条件的整数k的个数为(  )
A.1个B.2个C.3个D.4个

2.填空题(共6题)

5.
已知关于x的方程 的一个根为 ,则方程的另一个根为_____ .
6.
如图,将边长为4的正方形,沿两边剪去两个一边长为x的矩形,剩余部分的面积为9,可列出方程为     
7.
如图,中,弦,则点A到弦BC的距离等于___ .   
8.
如图,在△ABC中,BC的垂直平分线交它的外接圆于D、E两点.若∠B=24°,∠C=106°,则 的度数为____  
9.
如图,在Rt△ABC中,∠C=90°,∠B=60°,内切圆O于边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为_________
10.
在圆O中,弦AB∥弦CD,AB=24,CD=10,弦AB的弦心距为5,则AB和CD之间的距离是_____ .

3.解答题(共7题)

11.
用适当的方法解下列方程;
(1) (2)
(3) (4)
12.
一种电脑病毒NHK传播速度极快,每台带NHK病毒的电脑一天能传染若干台(1)现有一台电脑带上这种NHK病毒,开始两天共有225台带上NHK病毒,每台平均传染了几台?(2)两天后,启用新的杀毒软件“小北毒霸”,平均一天一台带NHK病毒电脑以少传染5台的速度在递减,再过两天,共有多少台电脑带NHK病毒?
13.
中, AB为直径, C 为上一点。
(1)如图 1. 过点 C 作 O 的切线 , 与 AB 的延长线相交于点 P, 若∠CAB=27°,求∠P 的大小;
(2)如图 2,D 为上一点 , 且 OD 经过 AC 的中点 E, 连接 DC 并延长 , 与 AB 的延长线相交于点 P, 若∠CAB=10°,求∠P 的大小.
14.
如图①,在平面直角坐标系中,直线与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点
A.

(1)求的半径;
(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.
(3)如图②,以AC为直径作交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.
15.
如图,OC平分∠AOB,D是OC上任意一点,⊙D与OA相切于点E,求证:OB与⊙D相切.
16.
如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C和∠AOC的度数.
17.
某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
试卷分析
  • 【1】题量占比

    单选题:(4道)

    填空题:(6道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:2

    5星难题:0

    6星难题:4

    7星难题:0

    8星难题:7

    9星难题:4