1.单选题- (共9题)
3.
函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,设函数f(g(x))有m个零点,函数g(f(x))有n个零点,则m+n等于( )


A.6 | B.10 | C.8 | D.1 |
8.
有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )
A.甲 | B.乙 | C.丙 | D.丁 |
9.
公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)


A.12 | B.24 | C.48 | D.96 |
2.选择题- (共3题)
3.填空题- (共3题)
13.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
由表中数据,求得线性回归方程为
=-20x+
.若在这些样本中任取一点,则它在回归直线左下方的概率为_________.
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中数据,求得线性回归方程为


14.
某工程由A、B、C、D四道工序完成,完成它们需用的时间依次2、5、x、4天,四道工序的先后顺序及相互关系是:A、B可以同时开工;A完成后,C可以开工;B、C完成后,D可以开工,若完成该工程总时间数为9天,则完成工序C需要的天数x最大为________.
4.解答题- (共5题)
16.
已知幂函数
在(0,+∞)上单调递增,函数g(x)=2x-k.
(Ⅰ)求实数m的值;
(Ⅱ)当x∈(1,2]时,记ƒ(x),g(x)的值域分别为集合

(Ⅰ)求实数m的值;
(Ⅱ)当x∈(1,2]时,记ƒ(x),g(x)的值域分别为集合
A.B,若A∪B=A,求实数k的值范围. |
17.
已知函数ƒ(x)=xlnx,g(x)=ax3-
.
(Ⅰ)求函数ƒ(x)的单调递增区间和最小值;
(Ⅱ)若函数y= ƒ(x)与函数y =g(x)的图象在交点处存在公共切线,求实数a的值.

(Ⅰ)求函数ƒ(x)的单调递增区间和最小值;
(Ⅱ)若函数y= ƒ(x)与函数y =g(x)的图象在交点处存在公共切线,求实数a的值.
18.
2016年9月3日,抗战胜利71周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、拥待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这个环节(可参加多个,也可都不参加)的情况及其概率如下表所示:

(Ⅰ)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求从参加纪念活动环节数为1的抗战老兵中抽取的人数;
(Ⅱ)某医疗部门决定从(Ⅰ)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.

(Ⅰ)若m=2n,则从这60名抗战老兵中按照参加纪念活动的环节数分层抽取6人进行座谈,求从参加纪念活动环节数为1的抗战老兵中抽取的人数;
(Ⅱ)某医疗部门决定从(Ⅰ)中抽取的6名抗战老兵中随机抽取2名进行体检,求这2名抗战老兵中至少有1人参加纪念活动的环节数为3的概率.
19.
十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策。提高生殖健康、妇幼保健、托幼等公共服务水平。为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30到40岁的公务员,得到情况如下表:

(Ⅰ)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由;
(Ⅱ)将频率看作概率,现从社会上随机抽取甲、乙、丙3位30到40 岁的男公务员,求这三人中至少有一人要生二胎的概率.
附:


(Ⅰ)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由;
(Ⅱ)将频率看作概率,现从社会上随机抽取甲、乙、丙3位30到40 岁的男公务员,求这三人中至少有一人要生二胎的概率.
附:


试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(3道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17