1.单选题- (共4题)
3.
如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是( )


A.12 | B.15 | C.20 | D.30 |
4.
下列命题,其中为真命题的是( )
①经过直线外一点,有且只有一条直线与已知直线平行;
②同位角相等;
③过一点有且只有一条直线与已知直线垂直;
④对顶角相等.
①经过直线外一点,有且只有一条直线与已知直线平行;
②同位角相等;
③过一点有且只有一条直线与已知直线垂直;
④对顶角相等.
A.①② | B.①③④ | C.①④ | D.②③④ |
2.填空题- (共3题)
6.
如图,已知直线l:y=
x,点A1(2,0),过点A1作x轴的垂线交直线l于点B1,以A1B1为边,向右侧作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边,向右侧作正方形A2B2C2A3,延长A3C2交直线l于点B3;以A3B3为边,向右侧作正方形A3B3C3A4,延长A4C3交直线l于点B4;…;按照这个规律继续作下去,点Bn的横坐标为_.(结果用含正整数n的代数式表示)


3.解答题- (共4题)
8.
某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.
甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;
乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.
优惠期间,设某游客(或一个家庭)采摘草莓的重量为x(kg),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.

(1)分别求y1,y2与x之间的函数关系式;
(2)求点A的坐标,并解释坐标的实际意义;
(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)
甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;
乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.
优惠期间,设某游客(或一个家庭)采摘草莓的重量为x(kg),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.

(1)分别求y1,y2与x之间的函数关系式;
(2)求点A的坐标,并解释坐标的实际意义;
(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)
9.
如图,在平面直角坐标系中,函数y=﹣x+2的图象与x轴,y轴分别交于点A,B,与函数y=
x+b的图象交于点C(﹣2,m).

(1)求m和b的值;
(2)函数y=
x+b的图象与x轴交于点D,点E从点D出发沿DA方向,以每秒2个单位长度匀速运动到点A(到A停止运动).设点E的运动时间为t秒.
①当△ACE的面积为12时,求t的值;
②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.


(1)求m和b的值;
(2)函数y=

①当△ACE的面积为12时,求t的值;
②在点E运动过程中,是否存在t的值,使△ACE为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(3道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:11