1.单选题- (共1题)
1.
给出下列四个结论:
①若命题
,
,则
;
②集合
满足:
,则符合条件的集合
的个数为3;
③命题“若
,则方程
有实数根”的逆否命题为:“若方程
没有实数根,则
”;
④设复数
满足
,
为虚数单位,复数
在复平面内对应的点在第三象限;
其中正确结论的个数为( )
①若命题



②集合



③命题“若




④设复数




其中正确结论的个数为( )
A.1 | B.2 | C.3 | D.4 |
2.填空题- (共1题)
2.
庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:
甲说:“我或乙能中奖”;乙说:“丁能中奖”’;
丙说:“我或乙能中奖”;丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是_.
甲说:“我或乙能中奖”;乙说:“丁能中奖”’;
丙说:“我或乙能中奖”;丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是_.
3.解答题- (共1题)
3.
某学校为了解该校高三年级学生数学科学习情况,对一模考试数学成绩进行分析,从中抽取了
名学生的成绩作为样本进行统计,该校全体学生的成绩均在
,按照
,
,
,
,
,
,
,
的分组作出频率分布直方图如图(1)所示,样本中分数在
内的所有数据的茎叶图如图(2)所示.根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表(3).

和频率分布直方图中的
,
的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量
的分布列和数学期望.












分数 | ![]() | ![]() ![]() | ![]() |
可能被录取院校层次 | 专科 | 本科 | 重本 |
图(3)
(1)求


(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为重本的人数,求随机变量

试卷分析
-
【1】题量占比
单选题:(1道)
填空题:(1道)
解答题:(1道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:3