1.单选题- (共2题)
1.
今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.

根据统计图提供的信息,下列推断合理的是( )

根据统计图提供的信息,下列推断合理的是( )
A.2010﹣2018年,北京市毎万人发明专利授权数逐年增长 |
B.2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件 |
C.2010年申请后得到授权的比例最低 |
D.2018年申请后得到授权的比例最高 |
2.填空题- (共3题)
3.解答题- (共3题)
6.
下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图.
①在直线l上取两点A,B;
②以点P为圆心,AB为半径画弧,以点B为圆心,AP为半径画弧,两弧在直线l上方相交于点Q;
③作直线PQ.
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:PA= ,AB= ,
∴四边形PABQ是平行四边形
∴PQ∥l( ).(填写推理的依据)
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ∥l.
作法:如图.
①在直线l上取两点A,B;
②以点P为圆心,AB为半径画弧,以点B为圆心,AP为半径画弧,两弧在直线l上方相交于点Q;
③作直线PQ.
根据小东设计的尺规作图过程
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:PA= ,AB= ,
∴四边形PABQ是平行四边形
∴PQ∥l( ).(填写推理的依据)

7.
如图,在Rt△ABC中,∠ABC=90°,D、E分别是边BC,AC的中点,连接ED并延长到点F,使DF=ED,连接BE、BF、CF、AD.
(1)求证:四边形BFCE是菱形;
(2)若BC=4,EF=2,求AD的长.
(1)求证:四边形BFCE是菱形;
(2)若BC=4,EF=2,求AD的长.

8.
为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.
a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部门成绩如下:
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙两部门成绩的平均数、方差、中位数如下:
d.近五年该单位参赛员工进入复赛的出线成绩如下:
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)可以推断出选择 部门参赛更好,理由为 ;
(3)预估(2)中部门今年参赛进入复赛的人数为 .
a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部门成绩如下:
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙两部门成绩的平均数、方差、中位数如下:
| 平均数 | 方差 | 中位数 |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年该单位参赛员工进入复赛的出线成绩如下:
| 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
出线成绩(百分制) | 79 | 81 | 80 | 81 | 82 |
根据以上信息,回答下列问题:
(1)写出表中m的值;
(2)可以推断出选择 部门参赛更好,理由为 ;
(3)预估(2)中部门今年参赛进入复赛的人数为 .

试卷分析
-
【1】题量占比
单选题:(2道)
填空题:(3道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:8