1.单选题- (共5题)
5.
二次函数y=ax2+bx+c的部分图象如图,则下列说法错误的是( )


A.对称轴是直线x=﹣1 |
B.abc<0 |
C.b2﹣4ac>0 |
D.方程ax2+bx+c=0的根是x1=﹣3和x2=1 |
2.填空题- (共4题)
7.
甲、乙分别骑电瓶车、自行车从A地出发,沿同一路线匀速前往B地,设乙行驶的时间为x(h),甲、乙两人距A地的路程S甲(km)、S乙(km)关于x(h)的函数图象如图①所示,甲、乙两人之间的路程差y(km)关于x(h)的函数图象如图②所示,对比图①、图②可得a+b的值为_____.

9.
如图是一个地铁站入口双翼闸机的示意图,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=61cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,当双翼收起时,可以通过闸机的物体最大宽度为_____.

3.解答题- (共5题)
10.
从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.
(1)求该火车每次提速的百分率;
(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了 小时.
(1)求该火车每次提速的百分率;
(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了 小时.
11.
如图,在平面直角坐标系中,反比例函数
的图象经过正方形ABCD的顶点A和B,点C、D的坐标分别是(0,﹣1)和(4,﹣3),边AD,BC分别交x轴于点E、F.

(1)填空:正方形的边长为 ;
(2)求反比例函数y=
的解析式;
(3)若点M是直线BC上一动点,作MN∥x轴,交反比例函数y=
的图象于点N,过点M,N分别向x轴作垂线,垂足分别为P、Q,得到矩形MPQN,设点M的横坐标为a.
①填空:点N的坐标为 ;(用含a的代数式表示)
②填空:若矩形MPQN的面积为6,则点M的横坐标为 .


(1)填空:正方形的边长为 ;
(2)求反比例函数y=

(3)若点M是直线BC上一动点,作MN∥x轴,交反比例函数y=

①填空:点N的坐标为 ;(用含a的代数式表示)
②填空:若矩形MPQN的面积为6,则点M的横坐标为 .
12.
如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0)和点C,与y轴交于点B.
(1)求抛物线解析式和点B坐标;
(2)在x轴上有一动点P(m,0)过点P作x轴的垂线交直线AB于点N,交抛物线与点M,当点M位于第一象限图象上,连接AM,BM,求△ABM面积的最大值及此时M点的坐标;
(3)如图2,点B关于x轴的对称点为D,连接AD,BC.
①填空:点P是线段AC上一点(不与点A、C重合),点Q是线段AB上一点(不与点A、B重合),则两条线段之和PQ+BP的最小值为 ;
②填空:将△ABC绕点A逆时针旋转a(0°<α<180°),当点C的对应点C′落在△ABD的边所在直线上时,则此时点B的对应点B′的坐标为 .
(1)求抛物线解析式和点B坐标;
(2)在x轴上有一动点P(m,0)过点P作x轴的垂线交直线AB于点N,交抛物线与点M,当点M位于第一象限图象上,连接AM,BM,求△ABM面积的最大值及此时M点的坐标;
(3)如图2,点B关于x轴的对称点为D,连接AD,BC.
①填空:点P是线段AC上一点(不与点A、C重合),点Q是线段AB上一点(不与点A、B重合),则两条线段之和PQ+BP的最小值为 ;
②填空:将△ABC绕点A逆时针旋转a(0°<α<180°),当点C的对应点C′落在△ABD的边所在直线上时,则此时点B的对应点B′的坐标为 .

13.
如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.
(1)求证:四边形BFCE是平行四边形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是 .
(1)求证:四边形BFCE是平行四边形;
(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是 .

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:6
7星难题:0
8星难题:4
9星难题:2