1.单选题- (共6题)
2.
据徐州旅游大数据分析系统显示,去年1-11月,我市接待外省、外市游客总量为6292万人次,同比增长43.15%.数6292万用科学记数法表示为( )
A.6292×104 | B.6.292×103 | C.62.92×106 | D.6.292×107 |
3.
下列计算正确的是( )
A.b5∙ b 5=2 b 5 | B.(a- b)5 ·(b - a)4=( a - b)9 |
C.a +2 a 2=3 a 3 | D.(a n-1)3 = a 3n-1 |
4.
已知抛物线y=ax2+bx+c(a<0)的对称轴为x=-1,与x轴的一个交点为(2,0).若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有( )
A.2个 | B.3个 | C.4个 | D.5个 |
2.选择题- (共4题)
7.计算
3+4={#blank#}1{#/blank#} | 4+4={#blank#}2{#/blank#} | 2+6={#blank#}3{#/blank#} |
1+5={#blank#}4{#/blank#} | 4+3={#blank#}5{#/blank#} | 3+5={#blank#}6{#/blank#} |
8.计算
3+4={#blank#}1{#/blank#} | 4+4={#blank#}2{#/blank#} | 2+6={#blank#}3{#/blank#} |
1+5={#blank#}4{#/blank#} | 4+3={#blank#}5{#/blank#} | 3+5={#blank#}6{#/blank#} |
9.计算
3+4={#blank#}1{#/blank#} | 4+4={#blank#}2{#/blank#} | 2+6={#blank#}3{#/blank#} |
1+5={#blank#}4{#/blank#} | 4+3={#blank#}5{#/blank#} | 3+5={#blank#}6{#/blank#} |
3.填空题- (共6题)
4.解答题- (共8题)
19.
绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.
(1)求原计划拆、建面积各是多少平方米?
(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?
(1)求原计划拆、建面积各是多少平方米?
(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?
20.
如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(
,1)在反比例函数y=
的图像上.

(1)k= ;
(2)在x轴的负半轴上存在一点 P ,使得S△AOP=
S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图像上,说明理由.



(1)k= ;
(2)在x轴的负半轴上存在一点 P ,使得S△AOP=

(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图像上,说明理由.
21.
甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.

(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.

(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.
22.
如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°的方向上,求C处与灯塔A的距离.

23.
如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=D

A. (1)求证:△ABC≌△DEF; (2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度. |

24.
为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

(1)本次调查共随机抽取了__ _名学生;
(2)补全频数分布直方图;
(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?

(1)本次调查共随机抽取了__ _名学生;
(2)补全频数分布直方图;
(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?
试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(4道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:7
7星难题:0
8星难题:4
9星难题:6