1.选择题- (共10题)
2.小芳同学站在平面镜前2m处照镜子,她向平面镜靠近0.5m,则像与她的距离为{#blank#}1{#/blank#}m,像的大小将{#blank#}2{#/blank#}(选填“变小”“变大”或“不变”).
2.单选题- (共6题)
11.
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是
;
③他至少击中目标1次的概率是
;
④他至多击中目标1次的概率是
其中正确结论的序号是( )
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是

③他至少击中目标1次的概率是

④他至多击中目标1次的概率是

其中正确结论的序号是( )
A.①②③ | B.①③ |
C.①④ | D.①② |
14.
一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是()
A.![]() | B.![]() | C.![]() | D.![]() |
16.
设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为
A.n=4,p=0.6 | B.n=6,p=0.4 |
C.n=8,p=0.3 | D.n=24,p=0.1 |
3.填空题- (共3题)
18.
某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).
4.解答题- (共5题)
20.
如图所示,在三棱锥S
ABC中,
,O为BC的中点.
(1)求证:
面ABC;
(2)求异面直线
与AB所成角的余弦值;
(3)在线段
上是否存在一点
,使二面角
的平面角的余弦值为
;若存在,求
的值;若不存在,试说明理由.


(1)求证:

(2)求异面直线

(3)在线段






21.
已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.



(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
22.
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束
(1)求第一次实验恰好摸到1个红球和1个白球的概率;
(2)记实验次数为X,求X的分布列及数学期望.
(1)求第一次实验恰好摸到1个红球和1个白球的概率;
(2)记实验次数为X,求X的分布列及数学期望.
23.
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用
局
胜制(即先胜
局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以
比
获胜的概率;
(2)求乙获胜且比赛局数多于
局的概率;
(3)求比赛局数
的分布列,并求
.



(1)求甲以


(2)求乙获胜且比赛局数多于

(3)求比赛局数


试卷分析
-
【1】题量占比
选择题:(10道)
单选题:(6道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:14