1.单选题- (共9题)
5.
春天来了,某学校组织学生外出踏青,4位男生和3为女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的战法种数是( )
A.964 | B.1080 | C.1152 | D.1296 |
7.
我校在模块考试中约有1000人参加考试,其数学考试成绩
,统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的
,则此次数学考试成绩不低于110分的学生人数约为( )


A.600 | B.400 |
C.300 | D.200 |
9.
下面给出了四个类比推理:
(1)由“若
则
”类比推出“若
为三个向量则
”;
(2)“a,b为实数,
则a=b=0”类比推出“
为复数,若
”
(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有( )
(1)由“若




(2)“a,b为实数,



(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.
上述四个推理中,结论正确的个数有( )
A.1个 | B.2个 | C.3个 | D.4个 |
2.填空题- (共4题)
3.解答题- (共4题)
16.
共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中
的值;
(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量
,求
的分布列和数学期望.

(1) 求图中

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量


17.
班主任为了对本班学生的考试成绩进行分析,决定从全班
名男同学,
名女同学中随机抽取一个容量为
的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(2)随机抽取
位,他们的数学分数从小到大排序是:
,物理分数从小到大排序是:
.
①若规定
分以上(包括
分)为优秀,求这
位同学中恰有
位同学的数学和物理分数均为优秀的概率;
②若这
位同学的数学、物理分数事实上对应如下表:

根据上表数据,由变量
与
的相关系数可知物理成绩
与数学成绩
之间具有较强的线性相关关系,现求
与
的线性回归方程(系数精确到
).
参考公式:回归直线的方程是:
,其中对应的回归估计值
,
参考数据:
,
,
,,
,.



(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(2)随机抽取



①若规定




②若这


根据上表数据,由变量







参考公式:回归直线的方程是:


参考数据:




试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17