人教版九年级数学上册 第21章 一元二次方程综合训练试题

适用年级:初三
试卷号:607812

试卷类型:单元测试
试卷考试时间:2018/12/11

1.单选题(共8题)

1.
已知x=a是方程x2﹣3x﹣5=0的根,则代数式4﹣2a2+6a的值为(  )
A.6B.9C.14D.﹣6
2.
下列方程是一元二次方程的是(  )
A.x﹣4=2xB.x2+x﹣5=0C.x2﹣4y+2=0D.﹣x+2=0
3.
已知4是关于x的方程x2﹣5mx+12m=0的一个根,且这个方程的两个根恰好是等腰三角形ABC的两条边长,则△ABC的周长为(  )
A.14B.16C.12或14D.14或16
4.
若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是(   )
A.k<且k≠﹣2B.k≤C.k≤且k≠﹣2D.k≥
5.
已知:x1,x2是方程x2﹣2x﹣5=0的两根,则2x12+x22﹣2x1=(  )
A.16B.17C.18D.19
6.
设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=(  )
A.﹣5B.9C.5D.7
7.
直角三角形两条直角边的和为7,面积为6,则斜边为( ).
A.B.5C.D.7
8.
已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为(  )
A.9B.12C.9或12D.6或12或15

2.填空题(共1题)

9.
参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场.设共有x个队参加比赛,则依题意可列方程为_____.

3.解答题(共12题)

10.
近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).
(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;
(2)下表是这户居民4月份和5月份的用水量和缴费情况;
月份
用水量(吨)
交水费总金额(元)
4
7
70
5
5
40
 
根据上表数据,求规定用水量a的值.
(3)结合当地水资源状况,谈谈如何开展水资源环境保护?如何节约用水?
11.
已知:关于x的一元二次方程mx2﹣(2m﹣2)x+m=0有实根.
(1)求m的取值范围;
(2)若原方程两个实数根为x1,x2,是否存在实数m,使得=1?请说明理由.
12.
如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料.
(1)设计一种砌法,使矩形花园的面积为300m2
(2)当BC为何值时,矩形ABCD的面积有最大值?并求出最大值.
13.
已知关于x的一元二次方程x2+(m﹣3)x﹣3m=0
(1)求证:该方程有两个实数根;
(2)若该方程的两个实数根x1、x2满足x12+x22=25,求m的值.
14.
关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根
(1)求实数k的取值范围.
(2)若方程两实根满足|x1|+|x2|=x1·x2,求k的值.
15.
如图所示,在长为32m、宽20m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块作试验田,要使试验田面积为570m2,问道路应多宽?
16.
在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.
(1)求甲、乙两种车辆单独完成任务分别需要多少天?
(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.
17.
为了“绿色出行”,王经理上班出行由自驾车改为乘坐地铁出行,已知他家距上班地点21千米,他用地铁方式平均每小时出行的路程,比用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的,求王经理地铁出行方式上班的平均速度.
18.
甲乙两人同时同地沿同一路线开始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分钟到达顶峰.甲乙两人的攀登速度各是多少?如果山高为米,甲的攀登速度是乙的倍,并比乙早分钟到达顶峰,则两人的攀登速度各是多少?
19.
十一黄金周期间,海洋中学决定组织部分优秀老师去北京旅游,天马旅行社推出如下收费标准:

(1)学校规定,人均旅游费高于700元,但又想低于1000元,那么该校所派人数应在什么范围内;
(2)已知学校已付旅游费27000元,问该校安排了多少名老师去北京旅游?
20.
如图,在Rt△ABC中,AC=8cm,BC=6cm,P点在BC上,从B点到C点运动(不包括 C点),点 P运动的速度为1cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为2cm/s,若点 P、Q 分别从B、C 同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当 t 为何值时,P、Q 两点的距离为 4cm?
(2)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?
21.
如图所示,在宽为,长为的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为,道路应为多宽?
试卷分析
  • 【1】题量占比

    单选题:(8道)

    填空题:(1道)

    解答题:(12道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:20

    7星难题:0

    8星难题:0

    9星难题:1