1.单选题- (共9题)
2.
某地区2016年投入教育经费2500万元,预计2018年投入3600万元.设这两年投入教育经费的年平均增长率为x,则下列方程正确的是( )
A.2500(1+x)2=3600 ![]() | B.2500x2=3600 |
C.2500(1+x%)2=3600 ![]() | D.2500(1+x)+2500(1+x)2=3600 |
2.填空题- (共8题)
15.
已知某工厂经过两年的时间把某种产品从现在的年产量100万台提高到121万台,那么每年的年平均增产百分率为________,按此年平均增长率,预计第四年该工厂的年产量为________。
17.
如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:____________ .

3.解答题- (共5题)
18.
如图,△ABC,∠B=90°,点P由A开始沿AB向B运动,速度是1cm/s,点Q由B开始沿BC向C运动,速度是2cm/s,如果P、Q同时出发,经过多长时间△PBQ的面积等于7cm2,请列出方程估计解的大致范围(误差不超过0.01s).


19.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
21.
如图,在Rt△ABC中,∠B=Rt∠,直角边AB、BC的长(AB<BC)是方程
2-7
+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边A→B→C→A的方向运动,运动时间为t(秒).

(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为
时运动时间t的值;
(3)点P在运动的过程中,是否存在点P,使△ABP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.



(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为

(3)点P在运动的过程中,是否存在点P,使△ABP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(8道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:11
7星难题:0
8星难题:5
9星难题:5