1.单选题- (共10题)
5.
用因式分解法把方程6x(x-7)=7-x分解成两个一次方程,正确的是( )
A.x-7=0,6x-1=0 | B.6x=0,x-7=0 | C.6x+1=0,x-7=0 | D.6x=7,x-7=7-x |
9.
如图,在长70m,宽40 m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的
,则路宽x应满足的方程是( )



A.(40-x)(70-x)=350 | B.(40-2x)(70-3x)=2450 |
C.(40-2x)(70-3x)=350 | D.(40-x)(70-x)=2450 |
2.选择题- (共1题)
3.填空题- (共3题)
4.解答题- (共8题)
16.
阅读以下材料,解答问题:
例:设y=x2+6x-1,求y的最小值.
解:y=x2+6x-1
=x2+2·3·x+32-32-1
=(x+3)2-10,
∵(x+3)2≥0,
∴(x+3)2-10≥-10即y的最小值是-10.
问题:(1)设y=x2-4x+5,求y的最小值.
(2)已知:a2+2a+b2-4b+5=0,求ab的值.
例:设y=x2+6x-1,求y的最小值.
解:y=x2+6x-1
=x2+2·3·x+32-32-1
=(x+3)2-10,
∵(x+3)2≥0,
∴(x+3)2-10≥-10即y的最小值是-10.
问题:(1)设y=x2-4x+5,求y的最小值.
(2)已知:a2+2a+b2-4b+5=0,求ab的值.
17.
某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:
(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?
(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(3)要使商场平均每天盈利1600元,可能吗?请说明理由.
(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?
(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(3)要使商场平均每天盈利1600元,可能吗?请说明理由.
18.
已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.
(1)判断方程根的情况;
(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;
(3)若△ABC的两边AB,AC的长是方程的两根,第三边BC的长为5,
①则k为何值时,△ABC是以BC为斜边的直角三角形?
②k为何值时,△ABC是等腰三角形,并求出△ABC的周长.
(1)判断方程根的情况;
(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;
(3)若△ABC的两边AB,AC的长是方程的两根,第三边BC的长为5,
①则k为何值时,△ABC是以BC为斜边的直角三角形?
②k为何值时,△ABC是等腰三角形,并求出△ABC的周长.
19.
合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;
(2)若建成后的寝室可供600人住宿,求单人间的数量;
(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?
(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;
(2)若建成后的寝室可供600人住宿,求单人间的数量;
(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(3道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:18
7星难题:0
8星难题:1
9星难题:2