1.单选题- (共5题)
4.
对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,
4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数
是( )

4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数
是( )

A.2.25 | B.2.5 | C.2.95 | D.3 |
5.
甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )

的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )

A.①②③ | B.仅有①② | C.仅有①③ | D.仅有②③ |
2.选择题- (共7题)
3.填空题- (共1题)
4.解答题- (共4题)
15.
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-
(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-


16.
如图1,点A为抛物线C1:
的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a
交直线AB于F,交抛物线C1于G,若FG:DE=4∶3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴
于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.


图1 图2

(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a
交直线AB于F,交抛物线C1于G,若FG:DE=4∶3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴
于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.


图1 图2
试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(7道)
填空题:(1道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:1
9星难题:5