1.单选题- (共9题)
1.
下列说法中正确的是( )
A.用图象表示变量之间关系时,用水平方向上的点表示自变量 |
B.用图象表示变量之间关系时,用纵轴上的点表示因变量 |
C.用图象表示变量之间关系时,用竖直方向上的点表示自变量 |
D.用图象表示变量之间关系时,用横轴上的点表示因变量 |
4.
二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是( )


A.①③④ | B.②③④ | C.①③⑤ | D.③④⑤ |
7.
下列关系中,两个变量之间为反比例函数关系的是( )
A.长40米的绳子减去x米,还剩y米 |
B.买单价3元的笔记本x本,花了y元 |
C.正方形的面积为S,边长为a |
D.菱形的面积为20,对角线的长分别为x,y |
2.填空题- (共3题)
10.
如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣
x+1与y轴交于点


A.求∠DBC﹣∠CBE=_____. |

12.
2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是_____ .

3.解答题- (共5题)
13.
某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).
(1)写出y与x的函数关系式;
(2)求出W与x的函数关系式(不必写出x的取值范围);
(3)降价多少元时,每天获得的利润最大?
(1)写出y与x的函数关系式;
(2)求出W与x的函数关系式(不必写出x的取值范围);
(3)降价多少元时,每天获得的利润最大?
14.
已知二次函数y=9x2﹣6ax+a2﹣b
(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)
①求a的值;
②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;
(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣
<x<c时的值恒大于或等于0,求实数c的取值范围.
(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)
①求a的值;
②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;
(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣

15.
如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.
(1)求点D的坐标;
(2)求证:△ADE≌△BCD;
(3)抛物线y=
x2﹣
x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.
(1)求点D的坐标;
(2)求证:△ADE≌△BCD;
(3)抛物线y=



16.
为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:
(1)在表中,写出m;n的值.
(2)补全频数直方图;
(3)计算扇形统计图中圆心角β的度数.
等级 | 频数(人) | 频率 |
A | 30 | 0.1 |
B | 90 | 0.3 |
C | m | 0.4 |
D | 60 | n |
(1)在表中,写出m;n的值.
(2)补全频数直方图;
(3)计算扇形统计图中圆心角β的度数.

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:6
7星难题:0
8星难题:5
9星难题:4