1.单选题- (共5题)
2.
下列各式从左边到右边的变形是因式分解的是()
A. (a+1)(a-1)=a2-1 B. a2-6a+9=(a-3)2
C. x2+2x+1=x(x+2x)+1 D. -18x4y3=-6x2y2·3x2y
A. (a+1)(a-1)=a2-1 B. a2-6a+9=(a-3)2
C. x2+2x+1=x(x+2x)+1 D. -18x4y3=-6x2y2·3x2y
3.
如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有( )个.

A. 1 B. 2 C. 3 D. 4

A. 1 B. 2 C. 3 D. 4
2.选择题- (共1题)
3.填空题- (共9题)
12.
如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________

4.解答题- (共7题)
17.
有一道题:“化简求值:(2a+1)(2a﹣1)+(a﹣2)2﹣4(a+1)(a﹣2),其中a=2”.小明在解题时错误地把“a=2”抄成了“a=﹣2”,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗?
21.
如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).
(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB= ;
(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;
(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.
(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB= ;
(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;
(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(9道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:10
9星难题:1