1.单选题- (共10题)
2.填空题- (共3题)
3.解答题- (共11题)
16.
如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若游乐场的坐标为(3,2),宠物店的坐标为(﹣1,﹣2),解答以下问题
(1)请在图中建立适当的平面直角坐标系,并写出汽车站的坐标;
(2)若消防站的坐标为(3,﹣1),请在坐标系中标出消防站的位置.
(1)请在图中建立适当的平面直角坐标系,并写出汽车站的坐标;
(2)若消防站的坐标为(3,﹣1),请在坐标系中标出消防站的位置.

17.
如图,在平面直角坐标系中,△ABC的顶点A(1,1),B(4,2),C(3,4)均在正方形的网格点上.
(1)△ABC的每个顶点的纵坐标保持不变,横坐标分别乘﹣1,将所得点用线段依次连接起来,得到△A1B1C1,画出△A1B1C1,并写出△A1B1C1与△ABC的位置关系;
(2)画出△ABC关于x轴对称的△A2B2C2.
(1)△ABC的每个顶点的纵坐标保持不变,横坐标分别乘﹣1,将所得点用线段依次连接起来,得到△A1B1C1,画出△A1B1C1,并写出△A1B1C1与△ABC的位置关系;
(2)画出△ABC关于x轴对称的△A2B2C2.

18.
某地植物园从正门到侧门有一条小路,甲徒步从正门出发匀速走向侧门,乙与甲同时出发,骑自行车从侧门匀速前往正门到达正门后休息0.2小时,然后按原路原速匀速返回侧门,图中折线分别表示甲、乙到侧门的距离y(km)与出发时间x(h)之间的函数关系图象,根据图象信息解答下列问题:
(1)求甲到侧门的距离y与x之间的函数关系式;
(2)求甲、乙第一次相遇时到侧门的距离.
(3)求甲、乙第二次相遇的时间.
(1)求甲到侧门的距离y与x之间的函数关系式;
(2)求甲、乙第一次相遇时到侧门的距离.
(3)求甲、乙第二次相遇的时间.

20.
为了缓解环境污染的问题,某地禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多,某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
(1)求出y与m之间的函数关系式;
(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
(1)求出y与m之间的函数关系式;
(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
22.
如图,MN是一条东西朝向的笔直的公路,C是位于该公路上的一个检测点辆长为9m的小货车BD行驶在该公路上小王位于点A处观察小货车,某时刻他发现车头D、车尾B及检测点C分别距离他10m、17m,2
m
(1)过点A向MN引垂线,垂足为E,请利用勾股定理分别找出线段AE与DE、AE与BE之间所满足的数量关系;
(2)在上一问的提示下,继续完成下列问题:
①求线段DE的长度;
②该小货车的车头D距离检测点C还有多少m?

(1)过点A向MN引垂线,垂足为E,请利用勾股定理分别找出线段AE与DE、AE与BE之间所满足的数量关系;
(2)在上一问的提示下,继续完成下列问题:
①求线段DE的长度;
②该小货车的车头D距离检测点C还有多少m?

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(11道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:5
9星难题:9