1.单选题- (共10题)
2.
7张如图的长为
,宽为
的小长方形纸片,按如图的方式不重叠地放在矩形
内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为
,当
的长度变化时,则
,
满足( )









A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共4题)
3.填空题- (共10题)
4.解答题- (共7题)
26.
我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:
(1)写出图2所表示的数学等式;
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)小明同学用3张边长为a的正方形,4张边长为b的正方形,7张边长分别为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?
(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(5a+7b)(4a+9b)长方形,那么x+y+z= .
(1)写出图2所表示的数学等式;
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)小明同学用3张边长为a的正方形,4张边长为b的正方形,7张边长分别为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?
(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(5a+7b)(4a+9b)长方形,那么x+y+z= .

28.
5.1劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:
经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:
(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省_________.
(2)甲、乙两队各有多少名学生?
(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人),现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请写出所有的抽调方案.
购买服装的套数 | ![]() | ![]() | ![]() |
每套服装的价格 | ![]() | ![]() | ![]() |
经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:
(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省_________.
(2)甲、乙两队各有多少名学生?
(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人),现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请写出所有的抽调方案.
30.
阅读下列材料,解答下面的问题:
我们知道方程
有无数个解,但在实际问题中往往只需求出其正整数解.例:由
,得:
(
、
为正整数).要使
为正整数,则
为正整数,可知:
为3的倍数,从而
,代入
.所以
的正整数解为
.问题:
(1)请你直接写出方程
=8的正整数解 .
(2)若
为自然数,则满足条件的正整数
的值有( )
(3)关于
,
的二元一次方程组
的解是正整数,求整数
的值.
我们知道方程












(1)请你直接写出方程

(2)若


A.3个 | B.4个 | C.5个 | D.6个 |




试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(4道)
填空题:(10道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:6
7星难题:0
8星难题:10
9星难题:9