1.单选题- (共5题)
1.
在直角坐标系
中,对于点
,定义变换
:将点
变换为点
,使得
其中
.这样变换
就将坐标系
内的曲线变换为坐标系
内的曲线.则四个函数
,
,
,
在坐标系
内的图象,变换为坐标系
内的四条曲线(如图)依次是


















A.②,③,①,④ | B.③,②,④,① | C.②,③,④,① | D.③,②,①,④ |
2.填空题- (共5题)
6.
函数
图象上不同两点
,
,
,
处的切线的斜率分别是
,
,规定
叫曲线
在点
与点
之间的“弯曲度”,给出以下命题:
(1)函数
图象上两点
、
的横坐标分别为1,2,则
;
(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
(3)设点
、
是抛物线,
上不同的两点,则
;
(4)设曲线
上不同两点
,
,
,
,且
,若
恒成立,则实数
的取值范围是
;
以上正确命题的序号为__(写出所有正确的)











(1)函数




(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
(3)设点




(4)设曲线









以上正确命题的序号为__(写出所有正确的)
3.解答题- (共5题)
13.
四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD=60°,
,E是BC中点,点Q在侧棱PC上.

(Ⅰ)求证:AD⊥PB;
(Ⅱ)若Q是PC中点,求二面角E﹣DQ﹣C的余弦值;
(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出
的值;若不存在,说明理由.


(Ⅰ)求证:AD⊥PB;
(Ⅱ)若Q是PC中点,求二面角E﹣DQ﹣C的余弦值;
(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出

14.
已知椭圆
的离心率为
,焦距为
,斜率为k的直线l与椭圆M有两个不同的交点A、B.
(1)求椭圆M的方程;
(2)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C、D与点
共线,求斜率k的值.



(1)求椭圆M的方程;
(2)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C、D与点

15.
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
![]() 日均浓度 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15