1.单选题- (共10题)
1.
下列说法中,正确的个数是( )
①两个三次多项式的和一定是三次多项式;
②如果a+b+c=0且|a|>|b|>|c|,那么ac<0;
③若b是大于﹣1的负数,则b3>b2>b;
④如果xyz>0,那么
的值为7或﹣1.
①两个三次多项式的和一定是三次多项式;
②如果a+b+c=0且|a|>|b|>|c|,那么ac<0;
③若b是大于﹣1的负数,则b3>b2>b;
④如果xyz>0,那么

A.1个 | B.2个 | C.3个 | D.4个 |
3.
超市里一袋食盐的净含量是(500±5)g,表示这袋食盐的重量范围在495g~505g之间,如果某种药品的保存温度为(20±2)℃,那么下列温度符合保存要求的是( )
A.+2℃ | B.﹣2℃ | C.21℃ | D.17℃ |
6.
十九大报告指出:十八大以来的五年,我国国内生产总值从2012年的540000亿元增长到2016年的800000亿元,这里的800000亿元用科学记数法表示为( )
A.8×105元 | B.0.8×1014元 | C.8×1013元 | D.80×1012元 |
2.选择题- (共2题)
3.填空题- (共6题)
18.
某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元,如果购买甲、乙两种奖品共花费了650元,设购买了甲种奖品x件,依题意列方程得______.
4.解答题- (共9题)
19.
数轴上A、B、C三点对应的数分别是a、b、c,若ab<0,c为最大的负整数,c>a且|b|>|a|.
(1)请在数轴上标出A,B,C三点的大致位置;
(2)化简|a﹣b|+|b﹣a+c|﹣|b﹣c|.
(1)请在数轴上标出A,B,C三点的大致位置;
(2)化简|a﹣b|+|b﹣a+c|﹣|b﹣c|.

20.
通过学习绝对值,我们知道|a|的几何意义是数轴上表示数a在数轴上的对应点与原点的距离,如:|5|表示5在数轴上的对应点到原点的距离.|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离,类似的,|5+3|=|5﹣(﹣3)|,即|5+3|表示5、﹣3在数轴上对应的两点之间的距离;一般
地,点A、B在数轴上分别表示数a、b,那么A、B之
间的距离可表示为AB=|a﹣b|.
请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示2和4的两点之间的距离是 ;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是 .
(2)点A、B、C在数轴上分别表示数x、﹣1、2,那么A到点B、点C的距离之和可表示为 (用含绝对值的式子表示);若A到点B、点C的距离之和有最小值,则x的取值范围是 .
(3)试求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值.


请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示2和4的两点之间的距离是 ;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是 .
(2)点A、B、C在数轴上分别表示数x、﹣1、2,那么A到点B、点C的距离之和可表示为 (用含绝对值的式子表示);若A到点B、点C的距离之和有最小值,则x的取值范围是 .
(3)试求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值.
21.
已知多项式2x3y﹣xy+16的次数为a,常数项为b,a,b分别对应着数轴上的A、B两点.
(1)a= ,b= ;并在数轴上画出A、B两点;
(2)若点P从点A出发,以每秒3个单位长度单位的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;
(3)数轴上还有一点C的坐标为30,若点P和Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P到达C点后,再立即以同样的速度返回,运动的终点A,求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求出此时点Q的坐标.
(1)a= ,b= ;并在数轴上画出A、B两点;
(2)若点P从点A出发,以每秒3个单位长度单位的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;
(3)数轴上还有一点C的坐标为30,若点P和Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P到达C点后,再立即以同样的速度返回,运动的终点A,求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求出此时点Q的坐标.

22.
有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:

回答下列问题:
(1)这8筐白菜中最接近标准重量的这筐白菜重 千克;
(2)这8筐白菜一共重多少千克?

回答下列问题:
(1)这8筐白菜中最接近标准重量的这筐白菜重 千克;
(2)这8筐白菜一共重多少千克?
24.
有一张边长为a厘米的大的正方形纸片,在它的四个角上各减去一个边长为x厘米的小正方形,折成一个无盖的长方体(如图).
(1)当a=9厘米时,请用含x的式子表示这个无盖长方体的体积.
(2)在(1)的条件下,当
x=3厘米时求无盖长方体的体积;
(3)当a=12厘米时,要将这张正方形纸片折成一个无盖的正方体,求此时正方体的体积.
(1)当a=9厘米时,请用含x的式子表示这个无盖长方体的体积.
(2)在(1)的条件下,当

(3)当a=12厘米时,要将这张正方形纸片折成一个无盖的正方体,求此时正方体的体积.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(2道)
填空题:(6道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:17
7星难题:0
8星难题:5
9星难题:1