1.单选题- (共11题)
6.
丁丁做了以下4道计算题:
(1)(﹣1)2004=2004;(2)0﹣(﹣1)=1;(3)﹣
;(4)
;
请你帮他检查一下,他一共做对了( )
A. 1题 B. 2题 C. 3题 D. 4题
(1)(﹣1)2004=2004;(2)0﹣(﹣1)=1;(3)﹣


请你帮他检查一下,他一共做对了( )
A. 1题 B. 2题 C. 3题 D. 4题
2.填空题- (共7题)
16.
如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个
图形一共有20个花盆,…,
则第n个图形中花盆的个数为_____.



3.解答题- (共8题)
21.
阅读下面材料并解决有关问题:
我们知道:|x|=
.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:
①x<﹣1;②﹣1≤x<2;③x≥2.
从而化简代数式|x+1|+|x﹣2|可分以下3种情况:
①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;
③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=
.
通过以上阅读,请你解决以下问题:
(1)化简代数式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.
我们知道:|x|=

①x<﹣1;②﹣1≤x<2;③x≥2.
从而化简代数式|x+1|+|x﹣2|可分以下3种情况:
①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;
③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=

通过以上阅读,请你解决以下问题:
(1)化简代数式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.
22.
有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
(1)20 筐白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准质量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20 筐白菜可卖多少元?(结果保留整数)
与标准质量的差值(单位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20 筐白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准质量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20 筐白菜可卖多少元?(结果保留整数)
23.
计算
(1)(
)×(﹣36)
(2)﹣32+(﹣
)2×(﹣
)+|﹣22|+(﹣1)2013;
(3)36×(﹣99
);
(4)﹣13×
﹣0.34×
+
×(﹣13)﹣
×0.34(用简便方法计算)
(1)(

(2)﹣32+(﹣


(3)36×(﹣99

(4)﹣13×




24.
观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…
(1)请根据你发现的规律填空:6×8+1=( )2;
(2)用含n的等式表示上面的规律: ;
(3)用找到的规律解决下面的问题:
计算:(1+
)(1+
)(1+
)(1+
)…(1+
)
(1)请根据你发现的规律填空:6×8+1=( )2;
(2)用含n的等式表示上面的规律: ;
(3)用找到的规律解决下面的问题:
计算:(1+





试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(7道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:17
7星难题:0
8星难题:4
9星难题:4