1.单选题- (共6题)
1.
2018年中国国际大数据产业博览会于5月29日在贵阳闭幕,大会以“数化万物智在融合”为年度主题,围绕“同期两会、一展、一赛及系列活动”展开,招商引资签约项目199个,金额352.8亿元人民币,352.8亿用科学记数法表示为( )
A.3.528×1010 | B.0.3528×1010 | C.35.28×109 | D.3.53×109 |
5.
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
①abc<0;②a+c>0;③2a+b=0;④关于x的一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3⑤b2<4ac

①abc<0;②a+c>0;③2a+b=0;④关于x的一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3⑤b2<4ac

A.②③④ | B.①②③④ | C.①③④ | D.③④⑤ |
2.填空题- (共3题)
3.解答题- (共5题)
12.
从江县盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆
汽车只能装同一种品质的椪柑,每种椪柑所用车辆都不少于3辆.
(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;
(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;
(3)为了减少椪柑积压,从江县制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?

(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;
椪柑品种 | A | B | C |
每辆汽车运载量(吨) | 10 | 8 | 6 |
每吨椪柑获利(元) | 800 | 1200 | 1000 |
(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;
(3)为了减少椪柑积压,从江县制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?
13.
如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).
(1)求抛物线及直线AC的解析式;
(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;
(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.
(1)求抛物线及直线AC的解析式;
(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;
(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:9
7星难题:0
8星难题:0
9星难题:3