1.单选题- (共5题)
2.
如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()


A.25° | B.30° | C.35° | D.40° |
2.选择题- (共2题)
3.填空题- (共5题)
4.解答题- (共5题)
16.
阅读下列材料:
如图,在四边形 ABCD 中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,

求证:CD=AB
小刚是这样思考的;由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊度数可联想到构造特殊三角形,即过点 A 作 AE⊥AB 交 BC 的延长线于点 E,对 AB=AE,∠E=∠D
在△ADC 与△CEA 中,
∠D = ∠E,∠DAC = ∠ECA = 75° ,AC = CA.
△ADC≌△CEA.
得 CD=AE=AB
请你参考小刚同学思考问题的方法,解决下面问题
如图,在四边形 ABCD 中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD 与 AB 否相等?若相等,请你给出证明;若不相等。请说明理由.
如图,在四边形 ABCD 中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,

求证:CD=AB
小刚是这样思考的;由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊度数可联想到构造特殊三角形,即过点 A 作 AE⊥AB 交 BC 的延长线于点 E,对 AB=AE,∠E=∠D
在△ADC 与△CEA 中,
∠D = ∠E,∠DAC = ∠ECA = 75° ,AC = CA.
△ADC≌△CEA.
得 CD=AE=AB
请你参考小刚同学思考问题的方法,解决下面问题
如图,在四边形 ABCD 中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD 与 AB 否相等?若相等,请你给出证明;若不相等。请说明理由.

试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(2道)
填空题:(5道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15