1.单选题- (共9题)
1.
关于某个物体受到的力与运动的关系,下列说法正确的是
A.物体受到的合力为零,速度一定为零 |
B.物体受到的合力恒定,速度一定恒定 |
C.物体受到的合力越大,速度一定越大 |
D.物体受到的合力越大,加速度一定越大 |
2.
在科学研究中,可以用风力仪直接测量风力的大小。仪器中有一根轻质金属丝悬挂着一个金属球,无风时金属球自由下垂,当受到沿水平方向吹来的风时,金属丝偏离竖直方向一个角度并保持恒定,如图所示。关于风力大小F与小球质量m、偏角θ之间的关系,下列关系中正确的是


A.F =" mgtanθ" | B.F = mgsinθ | C.![]() | D.![]() |
3.
某同学站在体重计上,通过做下蹲、起立的动作来探究超重和失重现象。下列说法正确的是


A.下蹲过程中人始终处于超重状态 |
B.起立过程中人始终处于超重状态 |
C.下蹲过程中人先处于超重状态后处于失重状态 |
D.起立过程中人先处于超重状态后处于失重状态 |
4.
如图所示,汽车在一水平公路上转弯时,汽车的运动可视为匀速圆周运动的一部分。下列关于汽车转弯时的说法正确的是


A.汽车处于平衡状态 | B.汽车的向心力由重力提供 |
C.汽车的向心力由支持力提供 | D.汽车的向心力由摩擦力提供 |
5.
如图甲所示,弹簧振子以
点为平衡位置,在
、
两点之间做简谐运动.振子的位移
随时间
的变化图象如图乙所示.下列判断正确的是( )








A.![]() | B.![]() |
C.![]() ![]() | D.![]() ![]() |
7.
如图所示,在真空中有一对带电的平行金属板水平放置.一带电粒子沿平行于板面的方向,从左侧两极板中央射入电场中,恰能从右侧极板边缘处离开电场.不计粒子重力.若可以改变某个量,下列哪种变化,仍能确保粒子一定飞出电场:( )


A.只增大粒子的带电量 | B.只增大电场强度 |
C.只减小粒子的比荷 | D.只减小粒子的入射速度 |
8.
如图所示,实线是一簇由负点电荷产生的电场线。一带正电的粒子仅在电场力作用下通过电场,图中虚线为粒子的运动轨迹,a、b是轨迹上的两点。下列判断正确的是()


A.a点场强小于b点场强 |
B.a点电势大于b点电势 |
C.带电粒子从a到b动能减小 |
D.带电粒子从a到b电势能减小 |
9.
如图所示,用理想变压器为一个“6V、12W”的小灯泡供电,变压器原线圈中的输入电压为220V。闭合开关S,小灯泡恰好正常发光。则下列说法中错误的是


A.变压器原副线圈的匝数之比为110:3 |
B.变压器原线圈中的输入电流为2A |
C.变压器原线圈中的输入功率为12W |
D.变压器副线圈中的输出功率为12W |
2.多选题- (共2题)
10.
如图所示,光滑绝缘的水平面上,一个边长为L的正方形金属框,在水平恒力F作用下运动,穿过方向如图的有界匀强磁场区域。磁场区域的宽度为d(d >L)。已知ab边进入磁场时,线框的加速度恰好为零。则线框进入磁场的过程和从磁场另一侧穿出的过程相比较,下列分析正确的是


A.线框中产生的感应电流方向相反 |
B.所受的安培力方向相反 |
C.两过程所用时间相等 |
D.进入磁场的过程中线框产生的热量较少 |
11.
如图所示为一台小型发电机示意图,磁场为水平方向.当线圈转到如图所示的水平位置时,下列判断正确的是( )


A.通过线圈的磁通量最大 |
B.通过线圈的磁通量为零 |
C.线圈中产生的电动势最大 |
D.线圈中产生的电动势为零 |
3.解答题- (共4题)
12.
如图所示,斜面AC长L=1m,倾角
=37°,CD段为与斜面平滑连接的水平地面。一个质量m=2kg的小物块从斜面顶端A由静止开始滑下。小物块与斜面、地面间的动摩擦因数均为
=0.5。不计空气阻力,g=10m/s2,sin37°=0.6,cos37°=0.8。求:

(1)小物块沿斜面下滑时的加速度大小;
(2)小物块滑到斜面底端C点时的速度大小v;
(3)小物块在水平地面上滑行的最远距离x。



(1)小物块沿斜面下滑时的加速度大小;
(2)小物块滑到斜面底端C点时的速度大小v;
(3)小物块在水平地面上滑行的最远距离x。

13.
如图1所示,一根轻质弹簧上端固定在天花板上,下端挂一小球(可视为质点),弹簧处于原长时小球位于O点.将小球从O点由静止释放,小球沿竖直方向在OP之间做往复运动,如图2所示.小球运动过程中弹簧始终处于弹性限度内.不计空气阻力,重力加速度为g.

(1)在小球运动的过程中,经过某一位置A时动能为Ek1,重力势能为EP1,弹簧弹性势能为E弹1,经过另一位置B时动能为Ek2,重力势能为EP2,弹簧弹性势能为E弹2.请根据功是能量转化的量度,证明:小球由A运动到B 的过程中,小球、弹簧和地球组成的物体系统机械能守恒;
(2)已知弹簧劲度系数为k.以O点为坐标原点,竖直向下为x轴正方向,建立一维坐标系O﹣x,如图2所示.
a.请在图3中画出小球从O运动到P的过程中,弹簧弹力的大小F随相对于O点的位移x变化的图象.根据F﹣x图象求:小球从O运动到任意位置x的过程中弹力所做的功W,以及小球在此位置时弹簧的弹性势能E弹;
b.已知小球质量为m.求小球经过OP中点时瞬时速度的大小v.

(1)在小球运动的过程中,经过某一位置A时动能为Ek1,重力势能为EP1,弹簧弹性势能为E弹1,经过另一位置B时动能为Ek2,重力势能为EP2,弹簧弹性势能为E弹2.请根据功是能量转化的量度,证明:小球由A运动到B 的过程中,小球、弹簧和地球组成的物体系统机械能守恒;
(2)已知弹簧劲度系数为k.以O点为坐标原点,竖直向下为x轴正方向,建立一维坐标系O﹣x,如图2所示.
a.请在图3中画出小球从O运动到P的过程中,弹簧弹力的大小F随相对于O点的位移x变化的图象.根据F﹣x图象求:小球从O运动到任意位置x的过程中弹力所做的功W,以及小球在此位置时弹簧的弹性势能E弹;
b.已知小球质量为m.求小球经过OP中点时瞬时速度的大小v.
14.
如图所示,两根平行的光滑金属导轨MN、PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计,水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度大小为B。导体棒a与b的质量均为m,电阻值分别为Ra=R,Rb=2R。b棒放置在水平导轨上足够远处,a棒在弧形导轨上距水平面h高度处由静止释放。运动过程中导体棒与导轨接触良好且始终与导轨垂直,重力加速度为g。求:

(1)a棒刚进入磁场时受到的安培力的大小和方向;
(2)最终稳定时两棒的速度大小;
(3)从a棒开始下落到最终稳定的过程中,b棒上产生的焦耳热是多少?

(1)a棒刚进入磁场时受到的安培力的大小和方向;
(2)最终稳定时两棒的速度大小;
(3)从a棒开始下落到最终稳定的过程中,b棒上产生的焦耳热是多少?
15.
在粒子物理学的研究中,经常用电场和磁场来控制或者改变粒子的运动。一粒子源产生离子束,已知离子质量为m,电荷量为+e 。不计离子重力以及离子间的相互作用力。

(1)如图1所示为一速度选择器,两平行金属板水平放置,电场强度E与磁感应强度B相互垂直。让粒子源射出的离子沿平行于极板方向进入速度选择器。求能沿图中虚线路径通过速度选择器的离子的速度大小v。
(2)如图2所示为竖直放置的两平行金属板A、B,两板中间均开有小孔,两板之间的电压UAB随时间的变化规律如图3所示。假设从速度选择器出来的离子动能为Ek=100eV,让这些离子沿垂直极板方向进入两板之间。两极板距离很近,离子通过两板间的时间可以忽略不计。设每秒从速度选择器射出的离子数为N0 = 5×1015个,已知e =1.6×10-19C。从B板小孔飞出的离子束可等效为一电流,求从t = 0到t = 0.4s时间内,从B板小孔飞出的离子产生的平均电流I。
(3)接(1),若在图1中速度选择器的上极板中间开一小孔,如图4所示。将粒子源产生的离子束中速度为0的离子,从上极板小孔处释放,离子恰好能到达下极板。求离子到达下极板时的速度大小v,以及两极板间的距离d。



(1)如图1所示为一速度选择器,两平行金属板水平放置,电场强度E与磁感应强度B相互垂直。让粒子源射出的离子沿平行于极板方向进入速度选择器。求能沿图中虚线路径通过速度选择器的离子的速度大小v。
(2)如图2所示为竖直放置的两平行金属板A、B,两板中间均开有小孔,两板之间的电压UAB随时间的变化规律如图3所示。假设从速度选择器出来的离子动能为Ek=100eV,让这些离子沿垂直极板方向进入两板之间。两极板距离很近,离子通过两板间的时间可以忽略不计。设每秒从速度选择器射出的离子数为N0 = 5×1015个,已知e =1.6×10-19C。从B板小孔飞出的离子束可等效为一电流,求从t = 0到t = 0.4s时间内,从B板小孔飞出的离子产生的平均电流I。
(3)接(1),若在图1中速度选择器的上极板中间开一小孔,如图4所示。将粒子源产生的离子束中速度为0的离子,从上极板小孔处释放,离子恰好能到达下极板。求离子到达下极板时的速度大小v,以及两极板间的距离d。

试卷分析
-
【1】题量占比
单选题:(9道)
多选题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:4
7星难题:0
8星难题:10
9星难题:0