1.单选题- (共2题)
2.
对于一次函数y=x+2,下列结论中正确的是( )
A.函数的图像与x轴交点坐标是(0,-2) | B.函数的图像不经过第四象限 |
C.函数的图像向上平移2个单位长度得到函数y=x的图像 | D.函数值随自变量的增大而减小 |
2.选择题- (共1题)
3.填空题- (共1题)
4.
“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:

①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)

①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
4.解答题- (共5题)
6.
定义一次函数y=px+q的特征数为[p,q].如:y=3x-1的特征数是[3,-1]
(1)若某正比例函数的特征数是[k+2,
],求k的值.
(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),求过A、B两点的一次函数的特征数.
(1)若某正比例函数的特征数是[k+2,

(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),求过A、B两点的一次函数的特征数.
7.
甲乙两人同时登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

(1)甲登山的速度是每分钟 米,乙在A地提速时距地面的高度b为 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?

(1)甲登山的速度是每分钟 米,乙在A地提速时距地面的高度b为 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?
8.
快、慢两车分别从相距480km路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1h,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车调头的时间忽略不计),快、慢两车距乙地的路程ykm与所用时间xh之间的函数图像如图所示,请结合图像信息解答下列问题:

(1)直接写出慢车的行驶速度和a的值;
(2)求快车的速度和B点坐标;
(3)快车和慢车第一次相遇时,距离甲地的路程是多少千米?

(1)直接写出慢车的行驶速度和a的值;
(2)求快车的速度和B点坐标;
(3)快车和慢车第一次相遇时,距离甲地的路程是多少千米?
试卷分析
-
【1】题量占比
单选题:(2道)
选择题:(1道)
填空题:(1道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:5
7星难题:0
8星难题:1
9星难题:2