1.单选题- (共13题)
2.
如图,东西方向上有A,C两地相距10千米,甲以16千米/时的速度从A地出发向正东方向前进,乙以12千米/时的速度从C地出发向正南方向前进,那么最快经过( )小时,甲、乙两人相距6千米?


A.![]() | B.![]() | C.1.5 | D.![]() |
3.
△ABC中,∠C=90°,AC=8cm,BC=6cm.动点P从点C开始,按C→A→B→C的路径运动,速度为每秒2cm,运动的时间为t秒.以下结论中正确的有( )
①t为6秒时,CP把△ABC的周长分成相等的两部分;②t为6.5秒时,CP把△ABC的面积分成相等的两部分,且此时CP长为5cm;③t为3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形,
①t为6秒时,CP把△ABC的周长分成相等的两部分;②t为6.5秒时,CP把△ABC的面积分成相等的两部分,且此时CP长为5cm;③t为3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形,
A.①②③ | B.①② | C.②③ | D.①③ |
4.
如图,OA=
,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为( )



A.![]() | B.![]() | C.![]() | D.![]() |
5.
《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
6.
如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是( )


A.10尺 | B.11尺 | C.12尺 | D.13尺 |
11.
如图,直角三角形三边上的等边三角形的面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是( )


A.S1+S2>S3 | B.S1+S2<S3 | C.S1+S2=S3 | D.S12+S22>S32 |
2.填空题- (共9题)
16.
如图,在Rt△ABC中,∠ACB=90°,AB=12cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从C出发,在CB边上以每秒
cm的速度向B匀速运动,设运动时间为t秒(0<t<6),连接MN,若△BMN是等腰三角形,则t的值为_____.


18.
《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.
19.
《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:原处还有多高的竹子?(1丈=10尺)答:原处的竹子还有_____尺高.

3.解答题- (共14题)
23.
小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,
得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.
(2)解完“思考题”后,小聪提出了如下两个问题:
①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.

(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,
得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.
(2)解完“思考题”后,小聪提出了如下两个问题:
①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.
24.
如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).
(1)当点P在AC上,且满足PA=PB时,求出此时t的值;
(2)当点P在AB上,求出t为何值时,△BCP为等腰三角形.
(1)当点P在AC上,且满足PA=PB时,求出此时t的值;
(2)当点P在AB上,求出t为何值时,△BCP为等腰三角形.

25.
(1)(操作发现)
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B= .
(2)(问题解决)
如图2,在等边三角形ABC内有一点P,且PA=2,PB=
,PC=1,求∠BPC的度数和等边三角形ABC的边长;
(3)(灵活运用)
如图3,在正方形ABCD内有一点P,且PA=
,BP=
,PC=1,求∠BPC的度数.
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B= .
(2)(问题解决)
如图2,在等边三角形ABC内有一点P,且PA=2,PB=

(3)(灵活运用)
如图3,在正方形ABCD内有一点P,且PA=



26.
如图(1):已知在△ABC中,AB=AC,P是底边BC上一点,作PD⊥AB于D,PE⊥AC于E,BF⊥AC于F,求证:PD+PE=BF.
[思路梳理]:如图(2):连接AP,必有S△APB+S△APC=S△ABC,因为△ABP、△ACP和△ABC的底相等,所以三条高PD、PE和BF满足关系:PD+PE=BF.
[变式应用]:如图(3):已知在△ABC中,AB=AC,P是底边BC的反向延长线上一点,作PD⊥AB于D,PE⊥AC于E,BF⊥AC于F,求证:PE﹣PD=BF.
[类比引申]:如图(4):已知P是边长为4cm等边△ABC内部一点,作PD⊥BC于D,PE⊥AB于E,PF⊥AC于F,那么PD+PE+PF等于多少.
[联想拓展]:已知某三角形的三条边分别是5cm、12cm、13cm,在平面上有一点P,它到此三角形的三边的距离相等,则这个距离等于多少.
[思路梳理]:如图(2):连接AP,必有S△APB+S△APC=S△ABC,因为△ABP、△ACP和△ABC的底相等,所以三条高PD、PE和BF满足关系:PD+PE=BF.
[变式应用]:如图(3):已知在△ABC中,AB=AC,P是底边BC的反向延长线上一点,作PD⊥AB于D,PE⊥AC于E,BF⊥AC于F,求证:PE﹣PD=BF.
[类比引申]:如图(4):已知P是边长为4cm等边△ABC内部一点,作PD⊥BC于D,PE⊥AB于E,PF⊥AC于F,那么PD+PE+PF等于多少.
[联想拓展]:已知某三角形的三条边分别是5cm、12cm、13cm,在平面上有一点P,它到此三角形的三边的距离相等,则这个距离等于多少.

27.
如图,Rt△ABC,AC⊥CB,AC=15,AB=25,点D为斜边上动点。

(1)如图,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;
(2)如图,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD。

(1)如图,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;

(2)如图,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD。

28.
如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.

(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.
方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)

方案2:作A点关于直线CD的对称点
,连接
交CD 于M点,水厂建在M点处,分别向两村修管道AM和BM. (即AM+BM) (如图)

从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.
(2)有一艘快艇Q从这条河中驶过,当快艇Q与CD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.

(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.
方案1:水厂建在C点,修自来水管道到A村,再到B 村(即AC+AB).(如图)

方案2:作A点关于直线CD的对称点



从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.
(2)有一艘快艇Q从这条河中驶过,当快艇Q与CD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.
30.
在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.

31.
今年最强台风“山竹”9月13日在我国登陆,A市于上午8:00接到台风警报时,台风中心位于A市正南方向125km的B处,正以20km/h的速度沿BC方向移动.已知A市到BC的距离AD=35km,在距离台风中心45km的区域内(包括45km)都将受到台风的影响.试问:A市何时受到台风影响,受到台风的影响的时间是多长?(
≈1.4)


32.
已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动的时间为t秒,
(1)当△ABP为直角三角形时,求t的值:
(2)当△ABP为等腰三角形时,求t的值.
(本题可根据需要,自己画图并解答)
(1)当△ABP为直角三角形时,求t的值:
(2)当△ABP为等腰三角形时,求t的值.
(本题可根据需要,自己画图并解答)

34.
已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:
(1)t为何值时,△PBQ是等边三角形?
(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.
(1)t为何值时,△PBQ是等边三角形?
(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.

试卷分析
-
【1】题量占比
单选题:(13道)
填空题:(9道)
解答题:(14道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:8
7星难题:0
8星难题:7
9星难题:21