山东省聊城市东阿县2017-2018学年八年级下学期期末检测数学试题

适用年级:初二
试卷号:199852

试卷类型:期末
试卷考试时间:2018/7/19

1.单选题(共10题)

1.
下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是(  )
A.0个B.1个C.2个D.3个
2.
估计的值在()
A. 2到3之间 B. 3到4之间 C. 4到5之间 D. 5到6之间
3.
下列运算正确的是(    )
A.B.=1
C.D..
4.
使代数式的值不小于代数式的值,则应为(   )
A.>17B.≥17C.<17D.≥17
5.
不等式组的解集是(   )
A.x>4B.x≤3C.3≤x<4D.无解
6.
y=(m﹣1)x|m|+3m表示一次函数,则m等于(  )
A.1B.﹣1C.0或﹣1D.1或﹣1
7.
如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是( )
A.B.C.D.
8.
有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为(  )
A.1B.2C.3D.4
9.
已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( )
A.(7,1)B.(1,7)C.(1,1)D.(2,1)
10.
矩形具有而菱形不具有的性质是(  )
A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角

2.选择题(共1题)

11.我国水资源的时间分布特点是(    )

3.填空题(共3题)

12.
(-4)2的算术平方根是________ 64的立方根是 _______
13.
已知1<x<5,化简+|x-5|=____.
14.
已知一次函数的图象交于点P,则点P的坐标为______.

4.解答题(共5题)

15.
计算
(1) (2)
16.
某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
 
A
B
进价(万元/套)
1.5
1.2
售价(万元/套)
1.65
1.4
 
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
17.
已知一次函数y=(3-k)x-2k2+18.
(1)当k为何值时,它的图象经过原点?
(2)当k为何值时,它的图象经过点(0,-2)?
(3)当k为何值时,它的图象平行于直线y=-x?
(4)当k为何值时,y随x增大而减小?
18.
昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.
根据下面图象,回答下列问题:

(1)求线段AB所表示的函数关系式;
(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?
19.
四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图1,求证:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的长度;
(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.
试卷分析
  • 【1】题量占比

    单选题:(10道)

    选择题:(1道)

    填空题:(3道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:12

    7星难题:0

    8星难题:2

    9星难题:3