1.单选题- (共8题)
5.
2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为( )
A.![]() ![]() ![]() | B.![]() ![]() ![]() | C.![]() ![]() | D.![]() ![]() |
2.选择题- (共1题)
3.填空题- (共6题)
11.
若正方形的边长为a,面积为10,下列关于a的四种说法:①a是10的算术平方根;②a是有理数;③a可以用数轴上的一个点来表示;④3<a<4.其中正确的有________(填序号).
4.解答题- (共5题)
18.
2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.
(1)求甲、乙两种货车每辆车可装多少件帐篷;
(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.
(1)求甲、乙两种货车每辆车可装多少件帐篷;
(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.
19.
如图,在△ABC中,D是AC上一点(CD>AD),按要求完成下列各小题.(保留作图痕迹,不写作法,标明各顶点字母)
(1)连接BD,求作△DEF(点E在线段CD上,点F在线段AC的右侧),使得△DEF≌△DAB;
(2)在(1)的条件下,作∠EFH=∠ABC,交CA的延长线于点H,并证明HF∥BC.
(1)连接BD,求作△DEF(点E在线段CD上,点F在线段AC的右侧),使得△DEF≌△DAB;
(2)在(1)的条件下,作∠EFH=∠ABC,交CA的延长线于点H,并证明HF∥BC.

20.
如图,CD是经过∠BCA的顶点C的一条直线,CA=CB,E,F是直线CD上的两点,且∠BEC=∠CFA=α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图(a),若∠BCA=90°,α=90°,则BE________CF,EF________|BE-AF|(填“>”“<”或“=”);
②如图(b),若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立;
(2)如图(c),若直线CD经过∠BCA的外部,∠BCA=α,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图(a),若∠BCA=90°,α=90°,则BE________CF,EF________|BE-AF|(填“>”“<”或“=”);
②如图(b),若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立;
(2)如图(c),若直线CD经过∠BCA的外部,∠BCA=α,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(1道)
填空题:(6道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:17
7星难题:0
8星难题:1
9星难题:0