1.单选题- (共6题)
3.
如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线C2018上,则m的值是


A.1 | B.-1 | C.0 | D.4035 |
2.填空题- (共5题)
8.
如图,过点C(2,1)分别作x轴、y轴的平行线,交直线y=﹣x+4于B、A两点,若二次函数y=ax2+bx+c的图象经过坐标原点O,且顶点在矩形ADBC内(包括边上),则a的取值范围是___.

3.解答题- (共6题)
12.
如图,点P是反比例函数
上第一象限上一个动点,点A、点B为坐标轴上的点,A(0,k),B(k,0).已知△OAB的面积为
.

(1)求k的值;
(2)连接PA、PB、AB,设△PAB的面积为S,点P的横坐标为t.请直接写出S与t的函数关系式;
(3)阅读下面的材料回答问题:
当a>0时,
∵
≥0,∴
≥2,即
≥2
由此可知:当
=0时,即a=1时,
取得最小值2.
问题:请你根据上述材料探索(2)中△PAB的面积S有没有最小值?若有,请直接写出S的最小值;若没有,说明理由.



(1)求k的值;
(2)连接PA、PB、AB,设△PAB的面积为S,点P的横坐标为t.请直接写出S与t的函数关系式;
(3)阅读下面的材料回答问题:
当a>0时,

∵



由此可知:当


问题:请你根据上述材料探索(2)中△PAB的面积S有没有最小值?若有,请直接写出S的最小值;若没有,说明理由.
13.
某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示.
(1)求该网店第x天获得的利润y关于x的函数关系式;
(2)这40天中该网店第几天获得的利润最大?最大利润是多少?
销售量p(件) | P=50—x |
销售单价q(元/件) | 当1≤x≤20时,q=30+![]() 当21≤x≤40时,q=20+ ![]() |
(1)求该网店第x天获得的利润y关于x的函数关系式;
(2)这40天中该网店第几天获得的利润最大?最大利润是多少?
14.
如图,抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为x=﹣2.

(1)求出抛物线与x轴的两个交点A、B的坐标.
(2)求出该抛物线的解析式.

(1)求出抛物线与x轴的两个交点A、B的坐标.
(2)求出该抛物线的解析式.
15.
在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形
,
,
都是点A,B,C的外延矩形,矩形
是点A,B,C的最佳外延矩形.

(1)如图1,已知A(-2,0),B(4,3),C(0,
).
①若
,则点A,B,C的最佳外延矩形的面积为 ;
②若点A,B,C的最佳外延矩形的面积为24,则
的值为 ;
(2)如图2,已知点M(6,0),N(0,8).P(
,
)是抛物线
上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标
的取值范围;
(3)如图3,已知点D(1,1).E(
,
)是函数
的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.
若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形





(1)如图1,已知A(-2,0),B(4,3),C(0,

①若

②若点A,B,C的最佳外延矩形的面积为24,则

(2)如图2,已知点M(6,0),N(0,8).P(




(3)如图3,已知点D(1,1).E(




16.
如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数
的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.

(1)求k的值;
(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
(3)如图②,若点Q(x,y)在该反比例函数图象上运动(不与D重合),过点Q作QM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数关系式,并写出x的取值范围.


(1)求k的值;
(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
(3)如图②,若点Q(x,y)在该反比例函数图象上运动(不与D重合),过点Q作QM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数关系式,并写出x的取值范围.
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:5
9星难题:0