1.单选题- (共7题)
3.
如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )


A.![]() | B.![]() | C.![]() | D.![]() |
5.
已知△ABC的三条边长分别
为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )

A.5条 | B.6条 | C.7条 | D.8条 |
2.填空题- (共6题)
3.解答题- (共8题)
16.
如图①,平面直角坐标系中,O为原点,点A坐标为(-4,0),AB∥y轴,点C在y轴上,一次函数y=
x+3的图象经过点B、C.

(1)点C的坐标为______,点B的坐标为______;
(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.
①求证:△CMD是等腰三角形;
②当CD=5时,求直线l的函数表达式.


(1)点C的坐标为______,点B的坐标为______;
(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.
①求证:△CMD是等腰三角形;
②当CD=5时,求直线l的函数表达式.
17.
为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算); 骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).
根据此收费标准,解决下列问题:
(1)连续骑行5h,应付费多少元?
(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为______;
(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.
根据此收费标准,解决下列问题:
(1)连续骑行5h,应付费多少元?
(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为______;
(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.
试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(6道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:7
7星难题:0
8星难题:2
9星难题:9