1.单选题- (共8题)
3.
教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为36.48万人,而2016年各类留学回国人员总数为43.25万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为( ).
A.![]() | B.![]() |
C.![]() | D.![]() |
7.
如图,在Rt△ABC中,∠ACB =90°,∠ABC=30°,将△ABC绕点C顺时针旋转
角(0°<
<180°)至△A′B′C,使得点A′恰好落在AB边上,则
等于( ).





A.150° | B.90° |
C.60° | D.30° |
2.填空题- (共6题)
3.解答题- (共10题)
15.
如图,在平面直角坐标系xOy中,点
在直线
上,过点
作
∥y轴,交直线
于点
,以
为直角顶点,
为直角边,在
的右侧作等腰直角三角形
;再过点
作
∥y轴,分别交直线
和
于
,
两点,以
为直角顶点,
为直角边,在
的右侧作等腰直角三角形
,…,按此规律进行下去,点
的横坐标为______,点
的横坐标为______,点
的横坐标为_______.(用含n的式子表示,n为正整数)
























16.
如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.
(1)填空:由△ ≌△ ,及B(m, n)可得点F的坐标为 ,同理可得点D的坐标为 ;(说明:点F,点D的坐标用含m,n,a的式子表示)
(2)直接利用(1)的结论解决下列问题:
①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);
②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.
(1)填空:由△ ≌△ ,及B(m, n)可得点F的坐标为 ,同理可得点D的坐标为 ;(说明:点F,点D的坐标用含m,n,a的式子表示)
(2)直接利用(1)的结论解决下列问题:
①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);
②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.

17.
(1)阅读以下内容并回答问题:

小雯用这个方法进行了尝试,点
向上平移3个单位后的对应点
的坐标为 ,过点
的直线的解析式为 .
(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:
将直线
向右平移1个单位,平移后直线的解析式为 ,另外直接将直线
向 (填“上”或“下”)平移 个单位也能得到这条直线.
(3)请你继续利用这个方法解决问题:
对于平面直角坐标系xOy内的图形M,将图形M上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M的一次“斜平移”. 求将直线
进行两次“斜平移”后得到的直线的解析式.

小雯用这个方法进行了尝试,点



(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:
将直线


(3)请你继续利用这个方法解决问题:
对于平面直角坐标系xOy内的图形M,将图形M上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M的一次“斜平移”. 求将直线


18.
如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为
,
,CD⊥y轴于点D,直线l 经过点D.
(1)直接写出点D的坐标;
(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.
①依题意补全图形;
②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;
③通过思考、讨论,同学们形成了证明该猜想的几种思路:
思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出
,从而证明结论.
思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.
……
请你参考上面的思路完成证明过程.(一种方法即可)
解:(1)点D的坐标为 .
(2)①补全图形.
②直线BF与直线l的位置关系是 .
③证明:



(1)直接写出点D的坐标;
(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.
①依题意补全图形;
②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;
③通过思考、讨论,同学们形成了证明该猜想的几种思路:
思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出

思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.
……
请你参考上面的思路完成证明过程.(一种方法即可)
解:(1)点D的坐标为 .
(2)①补全图形.
②直线BF与直线l的位置关系是 .
③证明:


19.
利用勾股定理可以在数轴上画出表示
的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足
,使其中a,b都为正整数.你取的正整数a=____,b=________;
第二步:(画长为
的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,
,则斜边OF的长即为
.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示
的点)在下面的数轴上画出表示
的点M,并描述第三步的画图步骤:_______________________________________________________________.

第一步:(计算)尝试满足

第二步:(画长为



请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示



20.
如图,在由边长都为1个单位长度的小正方形组成的
正方形网格中,点A,B,P 都在格点上.请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:
ABCD, 使点P在所画四边形的内部;
(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;
(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.

条件1:点P到四边形的两个顶点的距离相等;
条件2:点P在四边形的内部或其边上;
条件3:四边形至少一组对边平行.
(1)在图①中画出符合条件的一个
(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;
(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.

22.
《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.
(2)求户斜多长.
注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰
好能出去.
解决下列问题:
(1)示意图中,线段CE的长为 尺,线段DF的长为 尺;(2)求户斜多长.

23.
(1)画图-连线-写依据:
先分别完成以下画图(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线,并写出判定依据(只将最后一步判定特殊平行四边形的依据填在横线上).
①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;
②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.

(2)请从图1、图2的结论中选择一个进行证明.
证明:
先分别完成以下画图(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线,并写出判定依据(只将最后一步判定特殊平行四边形的依据填在横线上).
①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;
②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.

(2)请从图1、图2的结论中选择一个进行证明.

证明:
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(6道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:3
5星难题:0
6星难题:5
7星难题:0
8星难题:8
9星难题:8