1.单选题- (共10题)
2.
在平面直角坐标系中,直线
与x轴、y轴分别交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为( )
A. 9个 B. 7个 C. 5个 D. 3个

A. 9个 B. 7个 C. 5个 D. 3个
2.选择题- (共3题)
3.填空题- (共9题)
20.
在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=_____.

21.
如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E. F在射线AC与射线CB上运动,且满足AE=CF;当点E运动到与点C的距离为1时,则△DEF的面积为___________.

4.解答题- (共5题)
25.
如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足
+|4-b|=0,
(1)求A、B两点的坐标;
(2)D为OA的中点,连接BD,过点O作OE⊥BD于F,交AB于E,求证:∠BDO=∠EDA;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.

(1)求A、B两点的坐标;
(2)D为OA的中点,连接BD,过点O作OE⊥BD于F,交AB于E,求证:∠BDO=∠EDA;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.

26.
如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由.

试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(3道)
填空题:(9道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:4
5星难题:0
6星难题:10
7星难题:0
8星难题:3
9星难题:7