1.单选题- (共5题)
1.
如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为( )


A.32×20﹣32x﹣20x=540 | B.(32﹣x)(20﹣x)=540 |
C.32x+20x=540 | D.(32﹣x)(20﹣x)+x2=540 |
2.选择题- (共1题)
6.
--- Would you mind if I take the seat next to you?
--- _________. The person who was here has finished his lunch and left.
3.填空题- (共4题)
4.解答题- (共2题)
12.
问题提出:如果一个多边形的各个顶点均在另一个多边形的边上,则称这个多边形为另一多边形的内接多边形
问题探究:

(1)如图1,正方形PEFG的顶点E、F在等边三角形ABC的边AB上,顶点P在AC边上.请在等边三角形ABC内部,以A为位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面积最大(不写作法)
(2)如图2,在边长为4正方形ABCD中,画出一个面积最大的内接正三角形,并求此最大内接正三角形的面积
拓展应用:
(3)如图3,在边长为4的正方形ABCD中,能不能截下一个面积最大的直角三角形,并使其三边比为3:4:5,若能,请求出此直角三角形的最大面积,若不能,请说明理由.
问题探究:

(1)如图1,正方形PEFG的顶点E、F在等边三角形ABC的边AB上,顶点P在AC边上.请在等边三角形ABC内部,以A为位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面积最大(不写作法)
(2)如图2,在边长为4正方形ABCD中,画出一个面积最大的内接正三角形,并求此最大内接正三角形的面积
拓展应用:
(3)如图3,在边长为4的正方形ABCD中,能不能截下一个面积最大的直角三角形,并使其三边比为3:4:5,若能,请求出此直角三角形的最大面积,若不能,请说明理由.
试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(4道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:9
7星难题:0
8星难题:0
9星难题:2