1.单选题- (共9题)
6.
已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是( )


A.1 | B.2 | C.3 | D.4 |
7.
如图,菱形ABCD的两个顶点B、D在反比例函数y=
的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( )



A.﹣5 | B.﹣4 | C.﹣3 | D.﹣2 |
2.填空题- (共4题)
11.
“驴友”小明分三次从M地出发沿着不同的线路
线,B线,C线
去N地
在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种
他涉水行走4小时的路程与攀登6小时的路程相等
线、C线路程相等,都比A线路程多
,A线总时间等于C线总时间的
,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线,在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了
,
,
,若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且x,y,z都为正整数,则
______.











12.
小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离y(m)与小雪离开出发地的时间x(min)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.

3.解答题- (共7题)
15.
阅读下列材料
计算:(1﹣
﹣
)×(
+
)﹣(1﹣
﹣
)(
+
),令
+
=t,则:
原式=(1﹣t)(t+
)﹣(1﹣t﹣
)t=t+
﹣t2﹣
+t2=
在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣
﹣
)×(
+
)﹣(1﹣
﹣
)×(
+
)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
计算:(1﹣










原式=(1﹣t)(t+





在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣








(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
16.
春节期间,根据习俗每家每户都会在门口挂灯笼和对联,某商店看准了商机,购进了一批红灯笼和对联进行销售,已知每幅对联的进价比每个红灯笼的进价少10元,且用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍.
(1)求每幅对联和每个红灯笼的进价分别是多少?
(2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300幅对联和200个红灯笼,已知对联售价为6元一幅,红灯笼售价为24元一个,销售一段时间后,对联卖出了总数的
,红灯笼售出了总数的
,为了清仓,该店老板对剩下的对联和红灯笼以相同的折扣数进行打折销售,并很快全部售出,求商店最低打几折可以使得这批货的总利润率不低于90%?
(1)求每幅对联和每个红灯笼的进价分别是多少?
(2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300幅对联和200个红灯笼,已知对联售价为6元一幅,红灯笼售价为24元一个,销售一段时间后,对联卖出了总数的


17.
在平面直角坐标系中,抛物线y=
交x轴于点A、B(点A在点B的左侧),交y轴于点C.
(1)如图,点D是抛物线在第二象限内的一点,且满足|xD﹣xA|=2
,过点D作AC的平行线,分别与x轴、射线CB交于点F、E,点P为直线AC下方抛物线上的一动点,连接PD交线段AC于点Q,当四边形PQEF的面积最大时,在y轴上找一点M,x轴上找一点N,使得PM+MN﹣
NB取得最小值,求这个最小值;
(2)如图2,将△BOC沿着直线AC平移得到△B′O′C′,再将△B'O′C′沿B′C′翻折得到△B′O″C′,连接BC′、O″B,则△C′BO″能否构成等腰三角形?若能,请直接写出所有符合条件的点O″的坐标,若不能,请说明理由.

(1)如图,点D是抛物线在第二象限内的一点,且满足|xD﹣xA|=2


(2)如图2,将△BOC沿着直线AC平移得到△B′O′C′,再将△B'O′C′沿B′C′翻折得到△B′O″C′,连接BC′、O″B,则△C′BO″能否构成等腰三角形?若能,请直接写出所有符合条件的点O″的坐标,若不能,请说明理由.

18.
数学综合实践课上,老师提出问题:如图,有一张长为4dm,宽为3dm的长方形纸板,在纸板四个角剪去四个相同的小正方形,然后把四边折起来(实线为剪裁线,虚线为折叠线),做成一个无盖的长方体盒子,问小正方形的边长为多少时,盒子的体积最大?为了解决这个问题,小明同学根据学习函数的经验,进行了如下的探究:

(1)设小正方形的边长为xdm,长方体体积为ydm3,根据长方体的体积公式,可以得到y与x的函数关系式是 ,其中自变量x的取值范围是 .
(2)列出y与x的几组对应值如下表:
(注:补全表格,保留1位小数点)
(3)如图,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;
(4)结合函数图象回答:当小正方形的边长约为 dm时,无盖长方体盒子的体积最大,最大值约为 .

(1)设小正方形的边长为xdm,长方体体积为ydm3,根据长方体的体积公式,可以得到y与x的函数关系式是 ,其中自变量x的取值范围是 .
(2)列出y与x的几组对应值如下表:
x/dm | … | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 1 | ![]() | ![]() | … |
y/dm3 | … | 1.3 | 2.2 | 2.7 | | 3.0 | 2.8 | 2.5 | | 1.5 | 0.9 | … |
(注:补全表格,保留1位小数点)
(3)如图,请在平面直角坐标系中描出以补全后表格中各对对应值为坐标的点,画出该函数图象;
(4)结合函数图象回答:当小正方形的边长约为 dm时,无盖长方体盒子的体积最大,最大值约为 .
19.
如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.
(1)证明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的长,
(1)证明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的长,

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:13
7星难题:0
8星难题:0
9星难题:5