1.单选题- (共5题)
2.
用百度搜索关键词“十九大”,百度为我们找到相关结果约18 600 000个,把18 600 000这个数用科学记数法表示为( )
A.0.186×108 | B.1.86×107 | C.18.6×106 | D.186×105 |
2.填空题- (共4题)
9.
《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为_____.

3.解答题- (共6题)
11.
某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:
(1)这天该经营户批发了长豆角和番茄各多少千克?
(2)当天卖完这些番茄和长豆角能盈利多少元?
品名 | 长豆角 | 番茄 |
批发价(元/千克) | 3.2 | 2.4 |
零售价(元/千克) | 5.0 | 3.6 |
(1)这天该经营户批发了长豆角和番茄各多少千克?
(2)当天卖完这些番茄和长豆角能盈利多少元?
12.
如图,在平面直角坐标系中,已知抛物线y=ax2+bx+6与x轴交于A(﹣2,0),B(6,0)两点,与y轴交于点C,抛物线上有一点P,过点P作y轴的平行线分别交x轴和直线BC于点E和D,点P的横坐标为m,过点P作PF⊥直线BC与点F.
(1)求抛物线的函数表达式;
(2)当点F是线段BC的中点时,求m的值;
(3)如图2,线段MN是直线y=x上的动线段,(点M在点N的左侧),MN=
,若点N的横坐标为n,过点M作x轴的垂线与x轴交于点Q,过点N作x轴的垂线与抛物线交于点P.
①M( , )
②以点Q、M、P、N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.
(1)求抛物线的函数表达式;
(2)当点F是线段BC的中点时,求m的值;
(3)如图2,线段MN是直线y=x上的动线段,(点M在点N的左侧),MN=

①M( , )
②以点Q、M、P、N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.

13.
一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
(1)慢车的速度为 km/h,快车的速度为 km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.
(1)慢车的速度为 km/h,快车的速度为 km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.

14.
如图1,已知∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.(这几何模型具备“一线三直角”)如下图1:
(1)①请你证明:△ACE≌△CBD;②若AE=3,BD=5,求DE的长;
(2)迁移:如图2:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分别是边BC,AC上的点,将DE绕点D顺时针旋转90°,点E刚好落在边AB上的点F处,则CE= .(不要求写过程)
(1)①请你证明:△ACE≌△CBD;②若AE=3,BD=5,求DE的长;
(2)迁移:如图2:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分别是边BC,AC上的点,将DE绕点D顺时针旋转90°,点E刚好落在边AB上的点F处,则CE= .(不要求写过程)

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:2