1.单选题- (共9题)
2.选择题- (共1题)
3.填空题- (共5题)
14.
在每个小正方形的边长为1的网格中,点A、B均为格点.

(Ⅰ)AB的长等于_____.
(Ⅱ)若点C是以AB为底边的等腰直角三角形的顶点,点D在边AC上,且满足S△ABD=
S△ABC.请在如图所示的网格中,用无刻度的直尺,画出线段BD,并简要说明点D的位置是如何找到的(不要求证明)______.

(Ⅰ)AB的长等于_____.
(Ⅱ)若点C是以AB为底边的等腰直角三角形的顶点,点D在边AC上,且满足S△ABD=

4.解答题- (共4题)
16.
解不等式组
请结合题意,完成本题的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为______.

请结合题意,完成本题的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为______.
17.
某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.
(Ⅰ)写出y关于x的函数关系式;
(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
商品名称 | 甲 | 乙 |
进价(元/件) | 40 | 90 |
售价(元/件) | 60 | 120 |
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.
(Ⅰ)写出y关于x的函数关系式;
(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
18.
如图,抛物线y=-
x2+bx+c,与
轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接B



A. (Ⅰ)求抛物线的解析式及点D的坐标; (Ⅱ)点 ![]() ![]() (Ⅲ)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBFG,随着点P的运动,正方形的大小、位置也随着改变,当顶点F或G恰好落在y轴上时,请直接写出点P的横坐标. |

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(1道)
填空题:(5道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:9
7星难题:0
8星难题:3
9星难题:4