1.单选题- (共6题)
3.
在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )


A.![]() | B.![]() | C.(2,0); | D.(3,0); |
2.填空题- (共8题)
3.解答题- (共8题)
17.
参照学习函数的过程与方法,探究函数y=
的图象与性质.
因为
,即
,所以我们对比函数
来探究.
列表:
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=C相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当x<0时,y随x的增大而 ;(填“增大”或“减小”)
②y=
的图象是由y=﹣
的图象向 平移 个单位而得到;
③图象关于点 中心对称.(填点的坐标)
(3)设A(x1,y1),B(x2,y2)是函数y=
的图象上的两点,且x1+x2=0,试求y1+y2+3的值.

因为



列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣![]() | ![]() | 1 | 2 | 3 | 4 | … |
y=﹣![]() | … | ![]() | ![]() | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣![]() | ﹣![]() | … |
y=![]() | … | ![]() | ![]() | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | ![]() | ![]() | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=C相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当x<0时,y随x的增大而 ;(填“增大”或“减小”)
②y=


③图象关于点 中心对称.(填点的坐标)
(3)设A(x1,y1),B(x2,y2)是函数y=


18.
如图所示,一次函数y=kx+b与反比例函数y=
的图象交于A(2,4),B(﹣4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.

(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.

19.
一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).
(1)分别求出线段AB和双曲线CD的函数关系式;
(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?
(1)分别求出线段AB和双曲线CD的函数关系式;
(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?

20.
已知反比例函数y=
(m为常数,且m≠5).
(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.

(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.
21.
某报社为了了解市民“获取新闻的主要途径”,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 .
(3)若该市约有80万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的主要途径”的总人数.
组别 | 获取新闻的主要途径 | 人数 |
A | 电脑上网 | 280 |
B | 手机上网 | m |
C | 电视 | 140 |
D | 报纸 | n |
E | 其它 | 80 |
请根据图表信息解答下列问题:
(1)统计表中的m= ,n= ,并请补全条形统计图;
(2)扇形统计图中“D”所对应的圆心角的度数是 .
(3)若该市约有80万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的主要途径”的总人数.

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(8道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:9
7星难题:0
8星难题:6
9星难题:6